Menu Close

Find-all-possible-solutions-1-s-1-t-1-u-1-v-1-With-s-t-u-v-N-and-s-lt-t-lt-u-lt-v-




Question Number 194158 by Frix last updated on 28/Jun/23
Find all possible solutions:  (1/s)+(1/t)+(1/u)+(1/v)=1  With s, t, u, v ∈N and s<t<u<v
Findallpossiblesolutions:1s+1t+1u+1v=1Withs,t,u,vNands<t<u<v
Answered by AST last updated on 29/Jun/23
s<t⇒(1/s)>(1/t)⇒(4/s)>(1/s)+(1/t)+(1/u)+(1/v)=1⇒s<4  s=1 gives absurd result,so s=2 or 3  when s=2,(1/t)+(1/u)+(1/v)=(1/2)⇒(3/t)>(1/2)⇒t<6  t=1,2 gives absurd results.. So consider 3,4 or 5  t=3⇒(1/u)+(1/v)=(1/6)⇒u=((6(v−6)+36)/(v−6))=6+((36)/(v−6))<v  ⇒6v<v^2 −6v⇒v^2 −12v>0⇒v>12  ⇒v−6∣36⇒v=15,18,24,42(since v>12)  For each of the values,we get an integer value  for u=10,9,8,7 consecutively  Similarly,we can get values for t=4 or 5  t=4⇒(2/u)>(1/4)⇒u<8..Checking for 5,6,7  we get u,v=(5,20);(6,12)  t=5⇒(2/u)>(3/(10))⇒u<((20)/3)⇒u=6 gives v=((15)/2)∉N  So,consider s=3;we get (1/t)+(1/u)+(1/v)=(2/3)  (3/t)>(2/3)⇒t<4.5⇒t=4⇒(1/u)+(1/v)=(5/(12))  (2/u)>(5/(12))⇒u<4.8⇒no solution since u>t=4  s=2⇒t=3⇒(u,v)=(10,15),(9,18),(8,24),(7,42)  s=2⇒t=4⇒(u,v)=(5,20);(6,12)
s<t1s>1t4s>1s+1t+1u+1v=1s<4s=1givesabsurdresult,sos=2or3whens=2,1t+1u+1v=123t>12t<6t=1,2givesabsurdresults..Soconsider3,4or5t=31u+1v=16u=6(v6)+36v6=6+36v6<v6v<v26vv212v>0v>12v636v=15,18,24,42(sincev>12)Foreachofthevalues,wegetanintegervalueforu=10,9,8,7consecutivelySimilarly,wecangetvaluesfort=4or5t=42u>14u<8..Checkingfor5,6,7wegetu,v=(5,20);(6,12)t=52u>310u<203u=6givesv=152NSo,considers=3;weget1t+1u+1v=233t>23t<4.5t=41u+1v=5122u>512u<4.8nosolutionsinceu>t=4s=2t=3(u,v)=(10,15),(9,18),(8,24),(7,42)s=2t=4(u,v)=(5,20);(6,12)
Commented by Frix last updated on 29/Jun/23
��

Leave a Reply

Your email address will not be published. Required fields are marked *