Menu Close

find-the-value-of-a-for-which-the-limit-lim-x-0-sin-ax-tan-1-x-x-x-3-x-4-is-finite-and-then-evaluate-the-limit-




Question Number 194250 by horsebrand11 last updated on 01/Jul/23
 find the value of a for which the limit   lim_(x→0)  ((sin (ax)−tan^(−1) (x)−x)/(x^3 +x^4 )) is finite    and then evaluate the limit
findthevalueofaforwhichthelimitlimx0sin(ax)tan1(x)xx3+x4isfiniteandthenevaluatethelimit
Answered by qaz last updated on 01/Jul/23
sin (ax)=ax−(1/6)a^3 x^3 +...     ,arctan x=x−(1/3)x^3 +...  lim_(x→0) (((a−2)x+((1/3)−(1/6)a^3 )x^3 )/x^3 )=−1   ,a=2
sin(ax)=ax16a3x3+,arctanx=x13x3+limx0(a2)x+(1316a3)x3x3=1,a=2
Answered by gatocomcirrose last updated on 02/Jul/23
lim_(x→0) ((acos(ax)−(1/(1+x^2 ))−1)/(3x^2 +4x^3 ))=((a−2)/0)→±∞  a=2⇒lim_(x→0) ((−a^2 sen(ax)+((2x)/((1+x^2 )^2 )))/(6x+12x^2 ))  =lim_(x→0) ((−a^3 cos(ax)+((2(1+x^2 )^2 −8x^2 (1+x^2 ))/((1+x^2 )^4 )))/(6+24x))  =((−a^3 +2)/6)=((−8+2)/6)=−1
limx0acos(ax)11+x213x2+4x3=a20±a=2limx0a2sen(ax)+2x(1+x2)26x+12x2=limx0a3cos(ax)+2(1+x2)28x2(1+x2)(1+x2)46+24x=a3+26=8+26=1

Leave a Reply

Your email address will not be published. Required fields are marked *