Question Number 194185 by mnjuly1970 last updated on 29/Jun/23
$$ \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{0}^{\:−} } \:\left\{\:\frac{\:{x}^{\:\mathrm{2}} \:+\mathrm{2}{cos}\left({x}\right)\:+\:\lfloor−\frac{{tan}\left({x}\right)}{{x}}\:\rfloor}{{ax}^{\:\mathrm{4}} }\:\right\}\:=\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}\:=\:? \\ $$$$\:\:\:\:\:\:\:\:{a}:\:\:\:\frac{\mathrm{1}}{\mathrm{12}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{b}:\:\:−\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{c}:\:\:\:\mathrm{12}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{d}:\:\:−\mathrm{12}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$
Answered by MM42 last updated on 29/Jun/23
$${lim}_{{x}\rightarrow\mathrm{0}^{−} } \:\frac{{x}^{\mathrm{2}} +\mathrm{2}{cosx}−\mathrm{2}}{{ax}^{\mathrm{4}} }\:=\:\: \\ $$$${hop}\rightarrow\:{lim}_{{x}\rightarrow\mathrm{0}^{−} } \:\frac{\mathrm{2}{x}−\mathrm{2}{sinx}}{\mathrm{4}{ax}^{\mathrm{3}} }\:=\: \\ $$$${lim}_{{x}\rightarrow\mathrm{0}^{−} } \:\frac{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} \right)}{\mathrm{4}{ax}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{12}{a}}=\mathrm{1}\Rightarrow{a}=\frac{\mathrm{1}}{\mathrm{12}}\:\checkmark \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 29/Jun/23
$${yes}\:{sir} \\ $$
Commented by MM42 last updated on 29/Jun/23
$${good}\:{luck} \\ $$
Commented by mokys last updated on 01/Jul/23
$${how}\:\lfloor−\frac{{tanx}}{{x}}\rfloor\:=\:−\mathrm{2}\:?? \\ $$
Commented by mokys last updated on 01/Jul/23
$$??? \\ $$