Menu Close

Question-194128




Question Number 194128 by tri26112004 last updated on 28/Jun/23
Answered by MM42 last updated on 28/Jun/23
  a)    Σ_(n=2023) ^∞  (−(1/2))^n =Σ_(n=0) ^∞  (−(1/2))^n −Σ_(n=0) ^(2022) (−(1/2))^n   =(2/3)−((1−((1/2))^(2022) )/(3/2)) = (1/3)×((1/2))^(2021)   b)  Σ_(n=1) ^∞  ((22)/(n(n+22))) = Σ_(n=1) ^∞  ((1/n)−(1/(n+22)) )  S_k =1+(1/2)+(1/3)+...+(1/(22))+...−(1/(k+21))−(1/(k+22))   Σ_(n=1) ^∞  ((22)/(n(n+22))) =lim_(k→∞)  S_k  =1+(1/2)+(1/3)+...+(1/(22))
a)n=2023(12)n=n=0(12)n2022n=0(12)n=231(12)202232=13×(12)2021b)n=122n(n+22)=n=1(1n1n+22)Sk=1+12+13++122+1k+211k+22n=122n(n+22)=limkSk=1+12+13++122

Leave a Reply

Your email address will not be published. Required fields are marked *