Menu Close

Question-194197




Question Number 194197 by Mingma last updated on 30/Jun/23
Answered by mr W last updated on 01/Jul/23
Commented by mr W last updated on 01/Jul/23
x_P =s cos θ  y_P =s sin θ  y_P =f(x_P )  x_Q =s cos ((π/3)+θ)=(1/2)(s cos θ−(√3) s sin θ)  x_P −(√3) y_P =2x_Q   y_Q =s sin ((π/3)+θ)=(1/2)((√3) s cos θ+s sin θ)  ⇒(√3) x_P +y_P =2y_Q   ⇒y_P =((−(√3) x_P +y_P )/2)  ⇒x_P =((x_Q +(√3)y_Q )/2)  locus of point Q:  ((−(√3) x_P +y_P )/2)=f(((x_Q +(√3)y_Q )/2))  or  ((−(√3) x+y)/2)=f(((x+(√3)y)/2))    if locus of P is a segment y=ax+b,  then the locus of Q is  ((−(√3) x+y)/2)=a×((x+(√3)y)/2)+b  ⇒(a+(√3))x+(a(√3)−1)y+2b=0  this is also a segment.   (same segment rotated by 60° about O)    similarly we can see: if the locus of  P is a circle, then the locus of Q is  also a circle.  (same circle rotated by 60° about O)
$${x}_{{P}} ={s}\:\mathrm{cos}\:\theta \\ $$$${y}_{{P}} ={s}\:\mathrm{sin}\:\theta \\ $$$${y}_{{P}} ={f}\left({x}_{{P}} \right) \\ $$$${x}_{{Q}} ={s}\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{3}}+\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({s}\:\mathrm{cos}\:\theta−\sqrt{\mathrm{3}}\:{s}\:\mathrm{sin}\:\theta\right) \\ $$$${x}_{{P}} −\sqrt{\mathrm{3}}\:{y}_{{P}} =\mathrm{2}{x}_{{Q}} \\ $$$${y}_{{Q}} ={s}\:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{3}}\:{s}\:\mathrm{cos}\:\theta+{s}\:\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow\sqrt{\mathrm{3}}\:{x}_{{P}} +{y}_{{P}} =\mathrm{2}{y}_{{Q}} \\ $$$$\Rightarrow{y}_{{P}} =\frac{−\sqrt{\mathrm{3}}\:{x}_{{P}} +{y}_{{P}} }{\mathrm{2}} \\ $$$$\Rightarrow{x}_{{P}} =\frac{{x}_{{Q}} +\sqrt{\mathrm{3}}{y}_{{Q}} }{\mathrm{2}} \\ $$$${locus}\:{of}\:{point}\:{Q}: \\ $$$$\frac{−\sqrt{\mathrm{3}}\:{x}_{{P}} +{y}_{{P}} }{\mathrm{2}}={f}\left(\frac{{x}_{{Q}} +\sqrt{\mathrm{3}}{y}_{{Q}} }{\mathrm{2}}\right) \\ $$$${or} \\ $$$$\frac{−\sqrt{\mathrm{3}}\:{x}+{y}}{\mathrm{2}}={f}\left(\frac{{x}+\sqrt{\mathrm{3}}{y}}{\mathrm{2}}\right) \\ $$$$ \\ $$$${if}\:{locus}\:{of}\:{P}\:{is}\:{a}\:{segment}\:{y}={ax}+{b}, \\ $$$${then}\:{the}\:{locus}\:{of}\:{Q}\:{is} \\ $$$$\frac{−\sqrt{\mathrm{3}}\:{x}+{y}}{\mathrm{2}}={a}×\frac{{x}+\sqrt{\mathrm{3}}{y}}{\mathrm{2}}+{b} \\ $$$$\Rightarrow\left({a}+\sqrt{\mathrm{3}}\right){x}+\left({a}\sqrt{\mathrm{3}}−\mathrm{1}\right){y}+\mathrm{2}{b}=\mathrm{0} \\ $$$${this}\:{is}\:{also}\:{a}\:{segment}.\: \\ $$$$\left({same}\:{segment}\:{rotated}\:{by}\:\mathrm{60}°\:{about}\:{O}\right) \\ $$$$ \\ $$$${similarly}\:{we}\:{can}\:{see}:\:{if}\:{the}\:{locus}\:{of} \\ $$$${P}\:{is}\:{a}\:{circle},\:{then}\:{the}\:{locus}\:{of}\:{Q}\:{is} \\ $$$${also}\:{a}\:{circle}. \\ $$$$\left({same}\:{circle}\:{rotated}\:{by}\:\mathrm{60}°\:{about}\:{O}\right) \\ $$
Commented by mr W last updated on 01/Jul/23
Commented by mr W last updated on 01/Jul/23
Commented by mr W last updated on 01/Jul/23
generally:  locus of point Q is the locus of point  P rotated by 60° about point O.
$${generally}: \\ $$$${locus}\:{of}\:{point}\:{Q}\:{is}\:{the}\:{locus}\:{of}\:{point} \\ $$$${P}\:{rotated}\:{by}\:\mathrm{60}°\:{about}\:{point}\:{O}. \\ $$
Commented by Mingma last updated on 02/Jul/23
Perfect solutions, sir��

Leave a Reply

Your email address will not be published. Required fields are marked *