Menu Close

f-f-x-ax-b-1-show-that-f-ax-b-af-x-b-deduce-f-ax-b-2-Show-that-f-x-is-a-constant-hence-deduce-f-




Question Number 194282 by alcohol last updated on 02/Jul/23
f(f(x)) = ax + b  1. show that f(ax+b) = af(x) + b  deduce f ′(ax + b)  2. Show that f ′(x) is a constant   hence deduce f
f(f(x))=ax+b1.showthatf(ax+b)=af(x)+bdeducef(ax+b)2.Showthatf(x)isaconstanthencededucef
Answered by Frix last updated on 02/Jul/23
f(x)=αx+β ⇒  f(f(x))=α^2 x+(α+1)β ⇒  a=α^2 _([⇒ a>0]) ∧b=(α+1)β ⇔ α=±(√a)∧β=(b/(1±(√a))) ⇒  f(x)=±(√a)x+(b/(1±(√a)))  f(ax+b)=f(α^2 x+(α+1)β)=  =α^3 x+(α^2 +α+1)β  af(x)+b=α^2 (αx+β)+(α+1)β=  =α^3 x+(α^2 +α+1)β  f′(ax+b)=α^3 =±a^(3/2)   f′(x)=±(√a)
f(x)=αx+βf(f(x))=α2x+(α+1)βa=α2[a>0]b=(α+1)βα=±aβ=b1±af(x)=±ax+b1±af(ax+b)=f(α2x+(α+1)β)==α3x+(α2+α+1)βaf(x)+b=α2(αx+β)+(α+1)β==α3x+(α2+α+1)βf(ax+b)=α3=±a32f(x)=±a

Leave a Reply

Your email address will not be published. Required fields are marked *