Menu Close

X-




Question Number 194325 by horsebrand11 last updated on 03/Jul/23
  X
$$\:\:\cancel{\mathcal{X}} \\ $$
Answered by AST last updated on 04/Jul/23
(((x^4 +y^4 +z^4 )/3))^(1/4_ ) ≥(√((x^2 +y^2 +z^2 )/3))=(√(5/3))⇒Σx^4 ≥((25)/3)  Σx^4 =(Σx^2 )^2 −2Σx^2 y^2 =25−2Σx^2 y^2   ⇒Σx^4 ≤25−0(since Σx^2 y^2 ≥0 and max occurs at 0)
$$\sqrt[{\mathrm{4}_{} }]{\frac{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} }{\mathrm{3}}}\geqslant\sqrt{\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }{\mathrm{3}}}=\sqrt{\frac{\mathrm{5}}{\mathrm{3}}}\Rightarrow\Sigma{x}^{\mathrm{4}} \geqslant\frac{\mathrm{25}}{\mathrm{3}} \\ $$$$\Sigma{x}^{\mathrm{4}} =\left(\Sigma{x}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}\Sigma{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{25}−\mathrm{2}\Sigma{x}^{\mathrm{2}} {y}^{\mathrm{2}} \\ $$$$\Rightarrow\Sigma{x}^{\mathrm{4}} \leqslant\mathrm{25}−\mathrm{0}\left({since}\:\Sigma{x}^{\mathrm{2}} {y}^{\mathrm{2}} \geqslant\mathrm{0}\:{and}\:{max}\:{occurs}\:{at}\:\mathrm{0}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *