Menu Close

Question-194363




Question Number 194363 by sonukgindia last updated on 05/Jul/23
Commented by Frix last updated on 05/Jul/23
There′s no solution.  (√(z_1 +(√z_2 )))+(√(z_1 −(√z_2 )))=r  Solving by 2 times [squaring (introduces  false solutions) and transforming] leads to:  z_1 =((r^4 +4z_2 +r^4 )/(4r^2 ))  z_1 =a+bi∧z_2 =c+di with a, b, c, d ∈R  a+bi=((4c+r^4 )/(4r^2 ))+(d/r^2 )i   { ((a=((4c+r^4 )/(4r^2 )))),((b=(d/r^2 ))) :}  We have r=2∧c=a+17  ⇒ a=7∧d=4b ⇒  f(b)=(√(7+bi+2(√(6+bi))))+(√(7+bi−2(√(6+bi))))  The real part of f(b) is ≥2(√6)  The imaginary part of f(b) has only one       zero at b=0  ⇒ f(0)=2(√6) is the only real point of f(b)
Theresnosolution.z1+z2+z1z2=rSolvingby2times[squaring(introducesfalsesolutions)andtransforming]leadsto:z1=r4+4z2+r44r2z1=a+biz2=c+diwitha,b,c,dRa+bi=4c+r44r2+dr2i{a=4c+r44r2b=dr2Wehaver=2c=a+17a=7d=4bf(b)=7+bi+26+bi+7+bi26+biTherealpartoff(b)is26Theimaginarypartoff(b)hasonlyonezeroatb=0f(0)=26istheonlyrealpointoff(b)
Answered by MacX last updated on 05/Jul/23
(√(z+(√(z+17))))+(√(z−(√(z+17))))=2   ⇒z+(√(z+17))+z−(√(z+17))+2(√(z^2 −(z+17)))=4  ⇒2z+2(√(z^2 −z−17))=4  ⇒2(√(z^2 −z−17))=4−2z=2(2−z)  ⇒z^2 −z−17=z^2 −4z+4  ⇒−z−17=−4z+4  ⇒3z=21  ⇒z=7  S_C ={7}
z+z+17+zz+17=2z+z+17+zz+17+2z2(z+17)=42z+2z2z17=42z2z17=42z=2(2z)z2z17=z24z+4z17=4z+43z=21z=7SC={7}
Commented by Frix last updated on 05/Jul/23
(√(7+(√(7+17))))+(√(7−(√(7+17))))=(√(7+(√(24))))+(√(7−(√(24))))=  =(1+(√6))+(−1+(√6))=2(√6)≠2
7+7+17+77+17=7+24+724==(1+6)+(1+6)=262

Leave a Reply

Your email address will not be published. Required fields are marked *