Question Number 194429 by horsebrand11 last updated on 06/Jul/23
$$\:\:\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\begin{cases}{\mathrm{x}^{\mathrm{2}} −\mathrm{5x}+\mathrm{a}\:;\:\mathrm{x}>\mathrm{1}}\\{\frac{\mathrm{3x}+\mathrm{2}}{\mathrm{x}−\mathrm{b}}\:;\:\mathrm{x}\leqslant\mathrm{1}}\end{cases} \\ $$$$\:\:\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{passes}\:\mathrm{through}\:\mathrm{at}\:\mathrm{point}\: \\ $$$$\:\:\left(\mathrm{2},−\mathrm{4}\right)\:\mathrm{and}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{exist}\:,\:\mathrm{find} \\ $$$$\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{3a}+\mathrm{2b}.\: \\ $$
Answered by MM42 last updated on 06/Jul/23
$${f}\left(\mathrm{2}\right)=−\mathrm{4}\Rightarrow\mathrm{4}−\mathrm{10}+{a}=−\mathrm{4}\Rightarrow{a}=\mathrm{2} \\ $$$${f}\left(\mathrm{1}^{+} \right)\:=\:\mathrm{1}−\mathrm{5}+\mathrm{2}=−\mathrm{2} \\ $$$${f}\left(\mathrm{1}^{−} \right)=\frac{\mathrm{5}}{\mathrm{1}−{b}}=−\mathrm{2}\Rightarrow{b}=\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{3}{a}+\mathrm{2}{b}=\mathrm{13}\:\checkmark\: \\ $$
Commented by horsebrand11 last updated on 07/Jul/23
$$\:\cancel{\underline{ }} \\ $$