Menu Close

n-1-1-n-2-n-a-a-0-




Question Number 194445 by tri26112004 last updated on 06/Jul/23
Σ_(n=1) ^∞  (1/(n^2 (n+a)))=¿  (a≠0)
n=11n2(n+a)=¿(a0)
Answered by mr W last updated on 08/Jul/23
((An+B)/n^2 )+(C/(n+a))=(((A+C)n^2 +(aA+B)n+aB)/(n^2 (n+a)))  aB=1 ⇒B=(1/a)  aA+B=0 ⇒A=−(B/a)=−(1/a^2 )  A+C=0 ⇒C=−1=(1/a^2 )  Σ_(n=1) ^∞ (1/(n^2 (n+a)))  =Σ_(n=1) ^∞ ((B/n^2 )+(A/n)+(C/(n+a)))  =BΣ_(n=1) ^∞ (1/n^2 )+Σ_(n=1) ^∞ ((A/n))+Σ_(n=1) ^∞ ((C/(n+a)))  =BΣ_(n=1) ^∞ (1/n^2 )+Σ_(n=1) ^a ((A/n))+Σ_(n=a+1) ^∞ ((A/n))+Σ_(n=1) ^∞ ((C/(n+a)))  =BΣ_(n=1) ^∞ (1/n^2 )+AΣ_(n=1) ^a (1/n)+Σ_(n=1) ^∞ ((A/(n+a)))+Σ_(n=1) ^∞ ((C/(n+a)))  =BΣ_(n=1) ^∞ (1/n^2 )+AΣ_(n=1) ^a (1/n)+Σ_(n=1) ^∞ (((A+C)/(n+a)))  =BΣ_(n=1) ^∞ (1/n^2 )+AΣ_(n=1) ^a (1/n)  =(1/a)Σ_(n=1) ^∞ (1/n^2 )−(1/a^2 )Σ_(n=1) ^a (1/n)  =(π^2 /(6a))−(1/a^2 )Σ_(n=1) ^a (1/n)
An+Bn2+Cn+a=(A+C)n2+(aA+B)n+aBn2(n+a)aB=1B=1aaA+B=0A=Ba=1a2A+C=0C=1=1a2n=11n2(n+a)=n=1(Bn2+An+Cn+a)=Bn=11n2+n=1(An)+n=1(Cn+a)=Bn=11n2+an=1(An)+n=a+1(An)+n=1(Cn+a)=Bn=11n2+Aan=11n+n=1(An+a)+n=1(Cn+a)=Bn=11n2+Aan=11n+n=1(A+Cn+a)=Bn=11n2+Aan=11n=1an=11n21a2an=11n=π26a1a2an=11n

Leave a Reply

Your email address will not be published. Required fields are marked *