Menu Close

Question-194444




Question Number 194444 by Abdullahrussell last updated on 06/Jul/23
Answered by Frix last updated on 08/Jul/23
Let y=px∧z=qx  It′s easy to get  p=((b(4−b))/(ab−2(a+b+c−4)))  q=((bc−2(a+b+c−4))/(ab−2(a+b+c−4)))  ab−2(a+b+c−4)≠0  But we are now free to choose x  If we first choose (x, y, z) to get (a, b, c)  we find that all triples (r, pr, qr) solve the  given equations.
$$\mathrm{Let}\:{y}={px}\wedge{z}={qx} \\ $$$$\mathrm{It}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{get} \\ $$$${p}=\frac{{b}\left(\mathrm{4}−{b}\right)}{{ab}−\mathrm{2}\left({a}+{b}+{c}−\mathrm{4}\right)} \\ $$$${q}=\frac{{bc}−\mathrm{2}\left({a}+{b}+{c}−\mathrm{4}\right)}{{ab}−\mathrm{2}\left({a}+{b}+{c}−\mathrm{4}\right)} \\ $$$${ab}−\mathrm{2}\left({a}+{b}+{c}−\mathrm{4}\right)\neq\mathrm{0} \\ $$$$\mathrm{But}\:\mathrm{we}\:\mathrm{are}\:\mathrm{now}\:\mathrm{free}\:\mathrm{to}\:\mathrm{choose}\:{x} \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{first}\:\mathrm{choose}\:\left({x},\:{y},\:{z}\right)\:\mathrm{to}\:\mathrm{get}\:\left({a},\:{b},\:{c}\right) \\ $$$$\mathrm{we}\:\mathrm{find}\:\mathrm{that}\:\mathrm{all}\:\mathrm{triples}\:\left({r},\:{pr},\:{qr}\right)\:\mathrm{solve}\:\mathrm{the} \\ $$$$\mathrm{given}\:\mathrm{equations}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *