Question Number 194528 by BaliramKumar last updated on 09/Jul/23
$$\bigstar\:\mathrm{Let}\:\mathrm{N}\:\mathrm{be}\:\mathrm{a}\:\mathrm{natural}\:\mathrm{number}\:\mathrm{where}\:\mathrm{N}\leq\mathrm{100}. \\ $$$$\:\:\:\:\:\:\:\:\mathrm{If}\:\mathrm{HCF}\left(\mathrm{N},\:\mathrm{100}\right)\:=\:\mathrm{1}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{all}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\:\mathrm{N}\:? \\ $$$$\:\:\:\:\:\:\:\left(\mathrm{a}\right)\:\mathrm{400}\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{1000}\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{2000}\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{4000} \\ $$
Answered by mahdipoor last updated on 09/Jul/23
$$\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{100}\right)−\left(\mathrm{2}+\mathrm{4}+\mathrm{6}+…\mathrm{100}\right) \\ $$$$−\left(\mathrm{5}+\mathrm{10}+\mathrm{15}+…+\mathrm{100}\right)+\left(\mathrm{10}+\mathrm{20}+\mathrm{30}+…+\mathrm{100}\right) \\ $$$$=\frac{\mathrm{100}×\mathrm{101}}{\mathrm{2}}−\frac{\mathrm{50}×\mathrm{102}}{\mathrm{2}}−\frac{\mathrm{20}×\mathrm{105}}{\mathrm{2}}+\frac{\mathrm{10}×\mathrm{110}}{\mathrm{2}} \\ $$$$=\mathrm{2000} \\ $$
Commented by BaliramKumar last updated on 09/Jul/23
$$\mathrm{typo}\:\mathrm{sir}\:\mathrm{4000}\rightarrow\mathrm{2000} \\ $$$$\mathrm{Nice}\:\mathrm{solution} \\ $$
Commented by mahdipoor last updated on 09/Jul/23
$${you}\:{are}\:{right}\:,\:{i}\:{forget}\:\frac{}{\mathrm{2}}\:! \\ $$
Answered by BaliramKumar last updated on 09/Jul/23
$$\mathrm{Apply}\:\mathrm{Euler}'\mathrm{s}\:\:\mathrm{totient}\:\mathrm{function} \\ $$$$\mathrm{Sum}\:=\:\mathrm{100}×\frac{\boldsymbol{\phi}\left(\mathrm{100}\right)}{\mathrm{2}}\:=\:\mathrm{100}×\frac{\mathrm{40}}{\mathrm{2}}\:=\:\mathrm{100}×\mathrm{20}\:=\:\mathrm{2000} \\ $$$$ \\ $$