Menu Close

repeat-question-Shiw-that-i-1-n-1-2i-1-1-2i-i-1-n-1-n-i-




Question Number 194559 by MM42 last updated on 09/Jul/23
repeat question  Shiw that :  Σ_(i=1) ^n  ((1/(2i−1))−(1/(2i)))=Σ_(i=1) ^n  (1/(n+i))  ?
repeatquestionShiwthat:ni=1(12i112i)=ni=11n+i?
Answered by witcher3 last updated on 10/Jul/23
n=1⇒1−(1/2)=(1/2)=(1/(1+1))  ∀n∈Z_+ suppose TrueΣ_(i=1) ^n (1/(2i−1))−(1/(2i))=Σ(1/(n+i))  Σ_(i=1) ^(n+1) (1/(2i−1))−(1/(2i))=^? Σ_(i=1) ^n (1/(n+1+i))=Σ_(i=1) ^(n−1) (1/(n+1+i))+(1/(2n+1))  ⇔Σ_(i=1) ^n ((1/(2i−1))−(1/(2i)))+(1/(2n+1))−(1/(2n+2))=  Σ_(i=1) ^n (1/(n+i))+(1/(2n+1))−(1/(2n+2))=Σ_(n=2) ^n (1/(n+i))+(1/(2n+1))+(1/(n+1))−(1/(2(n+1)))  =Σ_(i=1) ^(n−1) (1/(n+1+i))+(1/(n+1+n))+(1/(n+1+n+1))  =Σ_(i=1) ^(n+1) (1/((n+1)+i))....True
n=1112=12=11+1nZ+supposeTrueni=112i112i=Σ1n+in+1i=112i112i=?ni=11n+1+i=n1i=11n+1+i+12n+1ni=1(12i112i)+12n+112n+2=ni=11n+i+12n+112n+2=nn=21n+i+12n+1+1n+112(n+1)=n1i=11n+1+i+1n+1+n+1n+1+n+1=n+1i=11(n+1)+i.True
Commented by MM42 last updated on 10/Jul/23
excellent  ★
excellent
Commented by witcher3 last updated on 11/Jul/23
thank You sir
thankYousir
Answered by MM42 last updated on 10/Jul/23
(1−(1/2))+((1/3)−(1/4))+...+((1/(2n−1))−(1/(2n)))  =(1+(1/3)+...+(1/(2n−1)))−((1/2)+(1/4)+...+(1/(2n)))  +2((1/2)+(1/4)+...+(1/(2n)))−2((1/2)+(1/4)+...+(1/(2n)))  =(1+(1/2)+(1/3)+...+(1/n)+(1/(n+1))+...+(1/(2n)))−(1+(1/2)+(1/3)+...+(1/n))  =(1/(n+1))+(1/(n+2))+...+(1/(2n)) ✓
(112)+(1314)++(12n112n)=(1+13++12n1)(12+14++12n)+2(12+14++12n)2(12+14++12n)=(1+12+13++1n+1n+1++12n)(1+12+13++1n)=1n+1+1n+2++12n

Leave a Reply

Your email address will not be published. Required fields are marked *