Question Number 194568 by MathedUp last updated on 10/Jul/23

Answered by witcher3 last updated on 10/Jul/23
![Y_a (z)=((J_a (z)cos(πa)−J_(−a) (z))/(sin(πa))) J_a ′(z)Y_a (z)−J_a (z)Y′_a (z)= (1/(sin(πa)))[J′_a (z)J_a (z)cos(πa)−J′_a (z)J_(−a) (z)−J_a J′_a cos(πa) +J_(−a) ^′ (z)J_a (z)] =((J′_(−a) (z)J_a (z)−J′_a (z)J_(−a) (z))/(sin(πa))) We Have J_a (z),J_(−a) (z) Solution of z^2 f′′(z)+zf′(z)+(z^2 −a^2 )f=0 ⇒ { ((z^2 J_a ′′(z)+zJ_a ^′ (z)+(z^2 −a^2 )J_a (z)=0...1)),((z^2 J_(−a) ^(′′) (z)+zJ′_(−a) (z)+(z^2 −a^2 )J_(−a) (z)=0..2)) :} (1)∗J_(−a) (z)−(2)∗J_a (z) ⇔z^2 (J′′_a J_(−a) −J′′_(−a) J_a )+z(J′_a J_(−a) −J_(−a) ^′ J_a )=0 ⇒z(J′′_a J_(−a) −J′′_(−a) J_a )+(J′_a J_(−a) −J_(−a) ^′ J_a )=0 ⇔(d/dz)(z(J_a ′(z)J_(−a) (z)−J′_(−a) (z)J_a (z))=0 ⇔J′_a J_(−a) −J′_(−a) J=(c/z) know using taylor expension of Bassel Function J_a (z)=((((z/2))^a )/(Γ(1+a)))(1+O(z^2 )) J′_a (z)=((((z/2))^(a−1) )/(2Γ(a)))(1+O(z^2 )) (J′_a J_(−a) −J_(−a) ^′ J_a )=(1/z)((1/(Γ(a)Γ(1−a)))−(1/(Γ(−a)Γ(1+a))))(1+O(z^2 )) Γ(z)Γ(1−z)=(π/(sin(πz))) we get (2/z)(((sin(πa))/π))⇒C=2((sin(πa))/π) ⇒J′_(−a) (z)J_a (z)−J′_a (z)J_(−a) (z)=((−2sin(πa))/(πz)) J_a ′(z)Y_a (z)−J_a (z)Y′_a (z)=(1/(sin(πa)))[J′_(−a) (z)J_a (z)−J′_a (z)J_(−a) (z)] =(1/(sin(πa))) ((−2sin(πa))/(πz))=−(2/(πz))](https://www.tinkutara.com/question/Q194595.png)
Commented by MathedUp last updated on 11/Jul/23
WoW !!!!! I really understood after watching this Thx
Commented by MathedUp last updated on 11/Jul/23

Commented by witcher3 last updated on 11/Jul/23
