Menu Close

Equation-J-1-z-Y-z-J-z-Y-1-z-2-piz-plz-Solve-this-Equation-J-z-is-First-Kind-Bessel-Function-Y-z-is-Second-Kind-Bessel-Function-aka-Neuman-Func




Question Number 194568 by MathedUp last updated on 10/Jul/23
Equation..  J_𝛍 ^((1)) (z)Y_𝛍 (z)−J_𝛍 (z)Y_𝛍 ^((1)) (z)=−(2/(πz))  plz......Solve this Equation.......  J_𝛍 (z) is First Kind Bessel Function  Y_𝛍 (z) is Second Kind Bessel Function  (aka Neuman Function)  f^((n)) (z) n times derivate f(z) respect z
Equation..Jμ(1)(z)Yμ(z)Jμ(z)Yμ(1)(z)=2πzplzSolvethisEquation.Jμ(z)isFirstKindBesselFunctionYμ(z)isSecondKindBesselFunction(akaNeumanFunction)f(n)(z)ntimesderivatef(z)respectz
Answered by witcher3 last updated on 10/Jul/23
Y_a (z)=((J_a (z)cos(πa)−J_(−a) (z))/(sin(πa)))  J_a ′(z)Y_a (z)−J_a (z)Y′_a (z)=  (1/(sin(πa)))[J′_a (z)J_a (z)cos(πa)−J′_a (z)J_(−a) (z)−J_a J′_a cos(πa)  +J_(−a) ^′ (z)J_a (z)]  =((J′_(−a) (z)J_a (z)−J′_a (z)J_(−a) (z))/(sin(πa)))  We Have J_a (z),J_(−a) (z)  Solution of  z^2 f′′(z)+zf′(z)+(z^2 −a^2 )f=0  ⇒ { ((z^2 J_a ′′(z)+zJ_a ^′ (z)+(z^2 −a^2 )J_a (z)=0...1)),((z^2 J_(−a) ^(′′) (z)+zJ′_(−a) (z)+(z^2 −a^2 )J_(−a) (z)=0..2)) :}  (1)∗J_(−a) (z)−(2)∗J_a (z)  ⇔z^2 (J′′_a J_(−a) −J′′_(−a) J_a )+z(J′_a J_(−a) −J_(−a) ^′ J_a )=0  ⇒z(J′′_a J_(−a) −J′′_(−a) J_a )+(J′_a J_(−a) −J_(−a) ^′ J_a )=0  ⇔(d/dz)(z(J_a ′(z)J_(−a) (z)−J′_(−a) (z)J_a (z))=0  ⇔J′_a J_(−a) −J′_(−a) J=(c/z)  know using taylor expension of Bassel Function  J_a (z)=((((z/2))^a )/(Γ(1+a)))(1+O(z^2 ))  J′_a (z)=((((z/2))^(a−1) )/(2Γ(a)))(1+O(z^2 ))  (J′_a J_(−a) −J_(−a) ^′ J_a )=(1/z)((1/(Γ(a)Γ(1−a)))−(1/(Γ(−a)Γ(1+a))))(1+O(z^2 ))  Γ(z)Γ(1−z)=(π/(sin(πz)))  we get (2/z)(((sin(πa))/π))⇒C=2((sin(πa))/π)  ⇒J′_(−a) (z)J_a (z)−J′_a (z)J_(−a) (z)=((−2sin(πa))/(πz))  J_a ′(z)Y_a (z)−J_a (z)Y′_a (z)=(1/(sin(πa)))[J′_(−a) (z)J_a (z)−J′_a (z)J_(−a) (z)]  =(1/(sin(πa))) ((−2sin(πa))/(πz))=−(2/(πz))
Ya(z)=Ja(z)cos(πa)Ja(z)sin(πa)Ja(z)Ya(z)Ja(z)Ya(z)=1sin(πa)[Ja(z)Ja(z)cos(πa)Ja(z)Ja(z)JaJacos(πa)+Ja(z)Ja(z)]=Ja(z)Ja(z)Ja(z)Ja(z)sin(πa)WeHaveJa(z),Ja(z)Solutionofz2f(z)+zf(z)+(z2a2)f=0{z2Ja(z)+zJa(z)+(z2a2)Ja(z)=01z2Ja(z)+zJa(z)+(z2a2)Ja(z)=0..2(1)Ja(z)(2)Ja(z)z2(JaJaJaJa)+z(JaJaJaJa)=0z(JaJaJaJa)+(JaJaJaJa)=0ddz(z(Ja(z)Ja(z)Ja(z)Ja(z))=0JaJaJaJ=czknowusingtaylorexpensionofBasselFunctionJa(z)=(z2)aΓ(1+a)(1+O(z2))Ja(z)=(z2)a12Γ(a)(1+O(z2))(JaJaJaJa)=1z(1Γ(a)Γ(1a)1Γ(a)Γ(1+a))(1+O(z2))Γ(z)Γ(1z)=πsin(πz)weget2z(sin(πa)π)C=2sin(πa)πJa(z)Ja(z)Ja(z)Ja(z)=2sin(πa)πzJa(z)Ya(z)Ja(z)Ya(z)=1sin(πa)[Ja(z)Ja(z)Ja(z)Ja(z)]=1sin(πa)2sin(πa)πz=2πz
Commented by MathedUp last updated on 11/Jul/23
WoW !!!!! I really understood after watching this Thx
Commented by MathedUp last updated on 11/Jul/23
Commented by witcher3 last updated on 11/Jul/23
happy that help you Thanx sir
happythathelpyouThanxsir

Leave a Reply

Your email address will not be published. Required fields are marked *