Menu Close

if-u-n-1-5-1-5-2-n-1-5-2-n-then-u-n-1-u-n-u-n-1-n-0-1-2-




Question Number 194579 by MM42 last updated on 10/Jul/23
if    u_n =(1/( (√5)))[(((1+(√5))/2))^n −(((1−(√5))/2))^n ]   then   u_(n+1) =u_n +u_(n−1)    ?     ;   n=0,1,2,..
$${if}\:\:\:\:{u}_{{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} −\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \right] \\ $$$$\:{then}\:\:\:{u}_{{n}+\mathrm{1}} ={u}_{{n}} +{u}_{{n}−\mathrm{1}} \:\:\:?\:\:\:\:\:;\:\:\:{n}=\mathrm{0},\mathrm{1},\mathrm{2},.. \\ $$
Answered by Frix last updated on 10/Jul/23
n={0, 1, 2, 3, 4, 5, 6, 7, ...}  u_n ={0, 1, 1, 2, 3, 5, 8, 13, ...}
$${n}=\left\{\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{5},\:\mathrm{6},\:\mathrm{7},\:…\right\} \\ $$$${u}_{{n}} =\left\{\mathrm{0},\:\mathrm{1},\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{5},\:\mathrm{8},\:\mathrm{13},\:…\right\} \\ $$
Commented by MM42 last updated on 10/Jul/23
fibonacci  sequence  please  prove...
$${fibonacci}\:\:{sequence} \\ $$$${please}\:\:{prove}… \\ $$
Answered by MM42 last updated on 13/Jul/23
prove  u_n +u_(n−1) =(1/( (√5)))[(((1+(√5))/2))^n −(((1−(√5))/2))^n +(((1+(√5))/2))^(n−1) −(((1−(√5))/2))^(n−1) ]  =(1/( (√5)))[(((1+(√5))/2))^(n−1) (((1+(√5))/2)+1)−(((1−(√5))/2))^(n−1) (((1−(√5))/2)+1)]  =(1/( (√5)))[(((1+(√5))/2))^(n−1) (((3+(√5))/2))−(((1−(√5))/2))^(n−1) (((3−(√5))/2))]  =(1/( (√5)))[(((1+(√5))/2))^n −(((1−(√5))/2))^n ]=u_(n+1)   metod 2  let  a=((1+(√5))/2)  &  b=((1−(√5))/2)  ⇒u_n =(1/( (√5)))(a^n −b^n )  a+b=1  &  ab=−1   ⇒ x^2 +x−1=0  ; a,b , are the roots   a+b=1⇒a^(n+1) +a^n b=a^n  ⇒a^(n+1) −a^(n−1) =a^n   (i)   b^(n+1) +ab^n =b^n  ⇒b^(n+1) −b^(n−1) =b^n   (ii)  (i)+(ii)⇒a^(n+1) −b^(n+1) =(a^n −b^n )+(a^(n−1) −b^(n−1) )  ⇒u_(n+1) =u_m +u_(n−1)
$${prove} \\ $$$${u}_{{n}} +{u}_{{n}−\mathrm{1}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} −\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} +\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} −\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} \right] \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} \left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}+\mathrm{1}\right)−\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} \left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}+\mathrm{1}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} \left(\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)−\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} \left(\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} −\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \right]={u}_{{n}+\mathrm{1}} \\ $$$${metod}\:\mathrm{2} \\ $$$${let}\:\:{a}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\&\:\:{b}=\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\Rightarrow{u}_{{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left({a}^{{n}} −{b}^{{n}} \right) \\ $$$${a}+{b}=\mathrm{1}\:\:\&\:\:{ab}=−\mathrm{1}\:\:\:\Rightarrow\:{x}^{\mathrm{2}} +{x}−\mathrm{1}=\mathrm{0}\:\:;\:{a},{b}\:,\:{are}\:{the}\:{roots}\: \\ $$$${a}+{b}=\mathrm{1}\Rightarrow{a}^{{n}+\mathrm{1}} +{a}^{{n}} {b}={a}^{{n}} \:\Rightarrow{a}^{{n}+\mathrm{1}} −{a}^{{n}−\mathrm{1}} ={a}^{{n}} \:\:\left({i}\right) \\ $$$$\:{b}^{{n}+\mathrm{1}} +{ab}^{{n}} ={b}^{{n}} \:\Rightarrow{b}^{{n}+\mathrm{1}} −{b}^{{n}−\mathrm{1}} ={b}^{{n}} \:\:\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right)\Rightarrow{a}^{{n}+\mathrm{1}} −{b}^{{n}+\mathrm{1}} =\left({a}^{{n}} −{b}^{{n}} \right)+\left({a}^{{n}−\mathrm{1}} −{b}^{{n}−\mathrm{1}} \right) \\ $$$$\Rightarrow{u}_{{n}+\mathrm{1}} ={u}_{{m}} +{u}_{{n}−\mathrm{1}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *