Menu Close

Question-194593




Question Number 194593 by pascal889 last updated on 10/Jul/23
Answered by MM42 last updated on 10/Jul/23
u_n =u_(n−1) +n+1   ;n≥2  ,   u_1 =4  u_n =u_(n−1) +(n+1)        =u_(n−2) +(n)+(n+1)        =u_(n−3) +(n−1)+(n)+(n+1)       ⋮        =u_2 +4+5+...+(n)+(n+1)         =u_1 +3+4+...+(n)+(n+1)  ⇒u_n =4+(((n−1)(n+4))/2)=(n^2 /2)+((3n)/2)+2  ✓
$${u}_{{n}} ={u}_{{n}−\mathrm{1}} +{n}+\mathrm{1}\:\:\:;{n}\geqslant\mathrm{2}\:\:,\:\:\:{u}_{\mathrm{1}} =\mathrm{4} \\ $$$${u}_{{n}} ={u}_{{n}−\mathrm{1}} +\left({n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:={u}_{{n}−\mathrm{2}} +\left({n}\right)+\left({n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:={u}_{{n}−\mathrm{3}} +\left({n}−\mathrm{1}\right)+\left({n}\right)+\left({n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\vdots \\ $$$$\:\:\:\:\:\:={u}_{\mathrm{2}} +\mathrm{4}+\mathrm{5}+…+\left({n}\right)+\left({n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:={u}_{\mathrm{1}} +\mathrm{3}+\mathrm{4}+…+\left({n}\right)+\left({n}+\mathrm{1}\right) \\ $$$$\Rightarrow{u}_{{n}} =\mathrm{4}+\frac{\left({n}−\mathrm{1}\right)\left({n}+\mathrm{4}\right)}{\mathrm{2}}=\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{3}{n}}{\mathrm{2}}+\mathrm{2}\:\:\checkmark \\ $$
Answered by Frix last updated on 10/Jul/23
4+3=7  7+4=11  11+5=16  u_n =(n^2 /2)+((3n)/2)+2  u_(100000) =5000150002
$$\mathrm{4}+\mathrm{3}=\mathrm{7} \\ $$$$\mathrm{7}+\mathrm{4}=\mathrm{11} \\ $$$$\mathrm{11}+\mathrm{5}=\mathrm{16} \\ $$$${u}_{{n}} =\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{3}{n}}{\mathrm{2}}+\mathrm{2} \\ $$$${u}_{\mathrm{100000}} =\mathrm{5000150002} \\ $$
Commented by BaliramKumar last updated on 10/Jul/23
please detail   how to calculate u_n  = (n^2 /2)+ ((3n)/2)+2
$$\mathrm{please}\:\mathrm{detail}\: \\ $$$$\mathrm{how}\:\mathrm{to}\:\mathrm{calculate}\:\mathrm{u}_{\mathrm{n}} \:=\:\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{2}}+\:\frac{\mathrm{3n}}{\mathrm{2}}+\mathrm{2} \\ $$
Commented by Frix last updated on 10/Jul/23
u_n =c_2 n^2 +c_1 n+c_0   Insert all given pairs (n, u_n ) and solve the  system.
$${u}_{{n}} ={c}_{\mathrm{2}} {n}^{\mathrm{2}} +{c}_{\mathrm{1}} {n}+{c}_{\mathrm{0}} \\ $$$$\mathrm{Insert}\:\mathrm{all}\:\mathrm{given}\:\mathrm{pairs}\:\left({n},\:{u}_{{n}} \right)\:\mathrm{and}\:\mathrm{solve}\:\mathrm{the} \\ $$$$\mathrm{system}. \\ $$
Answered by horsebrand11 last updated on 11/Jul/23
 U_n =4+S_(n−1)     U_n =4+((n−1)/2)(6+(n−2).1)    U_n =4+((n−1)/2)(n+4)    U_n =(1/2)(n^2 +3n+4)
$$\:\mathrm{U}_{\mathrm{n}} =\mathrm{4}+\mathrm{S}_{\mathrm{n}−\mathrm{1}} \\ $$$$\:\:\mathrm{U}_{\mathrm{n}} =\mathrm{4}+\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\left(\mathrm{6}+\left(\mathrm{n}−\mathrm{2}\right).\mathrm{1}\right) \\ $$$$\:\:\mathrm{U}_{\mathrm{n}} =\mathrm{4}+\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\left(\mathrm{n}+\mathrm{4}\right) \\ $$$$\:\:\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{n}^{\mathrm{2}} +\mathrm{3n}+\mathrm{4}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *