Question Number 194593 by pascal889 last updated on 10/Jul/23
Answered by MM42 last updated on 10/Jul/23
$${u}_{{n}} ={u}_{{n}−\mathrm{1}} +{n}+\mathrm{1}\:\:\:;{n}\geqslant\mathrm{2}\:\:,\:\:\:{u}_{\mathrm{1}} =\mathrm{4} \\ $$$${u}_{{n}} ={u}_{{n}−\mathrm{1}} +\left({n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:={u}_{{n}−\mathrm{2}} +\left({n}\right)+\left({n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:={u}_{{n}−\mathrm{3}} +\left({n}−\mathrm{1}\right)+\left({n}\right)+\left({n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\vdots \\ $$$$\:\:\:\:\:\:={u}_{\mathrm{2}} +\mathrm{4}+\mathrm{5}+…+\left({n}\right)+\left({n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:={u}_{\mathrm{1}} +\mathrm{3}+\mathrm{4}+…+\left({n}\right)+\left({n}+\mathrm{1}\right) \\ $$$$\Rightarrow{u}_{{n}} =\mathrm{4}+\frac{\left({n}−\mathrm{1}\right)\left({n}+\mathrm{4}\right)}{\mathrm{2}}=\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{3}{n}}{\mathrm{2}}+\mathrm{2}\:\:\checkmark \\ $$
Answered by Frix last updated on 10/Jul/23
$$\mathrm{4}+\mathrm{3}=\mathrm{7} \\ $$$$\mathrm{7}+\mathrm{4}=\mathrm{11} \\ $$$$\mathrm{11}+\mathrm{5}=\mathrm{16} \\ $$$${u}_{{n}} =\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{3}{n}}{\mathrm{2}}+\mathrm{2} \\ $$$${u}_{\mathrm{100000}} =\mathrm{5000150002} \\ $$
Commented by BaliramKumar last updated on 10/Jul/23
$$\mathrm{please}\:\mathrm{detail}\: \\ $$$$\mathrm{how}\:\mathrm{to}\:\mathrm{calculate}\:\mathrm{u}_{\mathrm{n}} \:=\:\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{2}}+\:\frac{\mathrm{3n}}{\mathrm{2}}+\mathrm{2} \\ $$
Commented by Frix last updated on 10/Jul/23
$${u}_{{n}} ={c}_{\mathrm{2}} {n}^{\mathrm{2}} +{c}_{\mathrm{1}} {n}+{c}_{\mathrm{0}} \\ $$$$\mathrm{Insert}\:\mathrm{all}\:\mathrm{given}\:\mathrm{pairs}\:\left({n},\:{u}_{{n}} \right)\:\mathrm{and}\:\mathrm{solve}\:\mathrm{the} \\ $$$$\mathrm{system}. \\ $$
Answered by horsebrand11 last updated on 11/Jul/23
$$\:\mathrm{U}_{\mathrm{n}} =\mathrm{4}+\mathrm{S}_{\mathrm{n}−\mathrm{1}} \\ $$$$\:\:\mathrm{U}_{\mathrm{n}} =\mathrm{4}+\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\left(\mathrm{6}+\left(\mathrm{n}−\mathrm{2}\right).\mathrm{1}\right) \\ $$$$\:\:\mathrm{U}_{\mathrm{n}} =\mathrm{4}+\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\left(\mathrm{n}+\mathrm{4}\right) \\ $$$$\:\:\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{n}^{\mathrm{2}} +\mathrm{3n}+\mathrm{4}\right) \\ $$$$ \\ $$