Menu Close

a-1-a-2-a-3-a-n-gt-0-such-that-a-i-0-i-i-1-2-3-4-n-prove-that-2-n-a-1-a-1-a-2-a-1-a-2-a-n-n-1-a-1-2-a-2-2-a-n-2-




Question Number 194634 by York12 last updated on 12/Jul/23
a_1 ,a_2 ,a_3 ,....,a_n >0 such that a_i ∈[0,i]   ∀ i∈{1,2,3,4,...,n} prove that  2^n .a_1 (a_1 +a_2 )...(a_1 +a_2 +...+a_n )≥(n+1)(a_1 ^2 .a_2 ^2 ...a_n ^2 )
a1,a2,a3,.,an>0suchthatai[0,i]i{1,2,3,4,,n}provethat2n.a1(a1+a2)(a1+a2++an)(n+1)(a12.a22an2)
Answered by York12 last updated on 12/Jul/23
  a_1 +a_2 +a_3 +...+a_k =1×(a_1 /1)+2×(a_2 /2)+3×(a_3 /3)+...k×(a_k /k)  ((Σ_(i=1) ^k (((i×a_i )/i)))/(Σ_(i=1) ^k (i)))≥Π_(i=1) ^k (((a_i /i))^(i/(Σ_(i=1) ^k (i))) )  ⇒Σ_(i=1) ^k (((i×a_i )/i))≥Σ_(i=1) ^k (i)×Π_(i=1) ^k (((a_i /i))^(i/(Σ_(i=1) ^k (i))) )  ⇒Π_(k=1) ^n (Σ_(i=1) ^k (((i×a_i )/i)))≥Π_(k=1) ^n (Σ_(i=1) ^k (i)×Π_(i=1) ^k (((a_i /i))^(i/(Σ_(i=1) ^k (i))) )  =Π_(k=1) ^n (Σ_(i=1) ^k (i))×Π_(k=1) ^n (Π_(i=1) ^k (((a_i /i))^(i/(Σ_(i=1) ^k (i))) )  =((Π_(k=1) ^n ((k)(k+1)))/(Π_(k=1) ^n (2)))×Π_(k=1) ^n (((a_k /k))^((2kΣ_(m=k) ^n ((1/(m(m+1)))))) )  (1/(m(m+1)))=(1/m)−(1/(m+1))⇒ Σ_(m=k) ^n ((1/(m(m+1))))=Σ_(m=k) ^n ((1/m))−Σ_(m=k) ^n ((1/(m+1)))=((1/k)−(1/(n+1)))  ((Π_(k=1) ^n ((k)(k+1)))/(Π_(k=1) ^n (2)))×Π_(k=1) ^n (((a_k /k))^((2kΣ_(m=k) ^n ((1/(m(m+1)))))) )  =((Π_(k=1) ^n ((k)(k+1)))/(Π_(k=1) ^n (2)))×Π_(k=1) ^n (((a_k /k))^((2k((1/k)−(1/(n+1)))) )  2k((1/k)−(1/(n+1)))=2(((n+1−k)/(n+1)))  (((n+1−k)/(n+1)))≤1⇒2(((n+1−k)/(n+1)))≤2  ((a_k /k))≤1⇒((a_k /k))^(2(((n+1−k)/(n+1)))) ≥((a_k /k))^2   ((Π_(k=1) ^n ((k)(k+1)))/(Π_(k=1) ^n (2)))×Π_(k=1) ^n (((a_k /k))^((2k((1/k)−(1/(n+1)))) )≥((Π_(k=1) ^n ((k)(k+1)))/(Π_(k=1) ^n (2)))×Π_(k=1) ^n (((a_k /k))^((2)) )  =((n+1)/2^n )(a_1 ^2 a_2 ^2 a_3 ^2 ...a_n ^2 )  ⇒Π_(k=1) ^n (2Σ_(i=1) ^k (((i×a_i )/i)))≥(n+1)(a_1 ^2 a_2 ^2 a_3 ^2 ...a_n ^2 )                                                  ▽
a1+a2+a3++ak=1×a11+2×a22+3×a33+k×akkki=1(i×aii)ki=1(i)ki=1((aii)iki=1(i))ki=1(i×aii)ki=1(i)×ki=1((aii)iki=1(i))nk=1(ki=1(i×aii))nk=1(ki=1(i)×ki=1((aii)iki=1(i))=nk=1(ki=1(i))×nk=1(ki=1((aii)iki=1(i))=nk=1((k)(k+1))nk=1(2)×nk=1((akk)(2knm=k(1m(m+1))))1m(m+1)=1m1m+1nm=k(1m(m+1))=nm=k(1m)nm=k(1m+1)=(1k1n+1)nk=1((k)(k+1))nk=1(2)×nk=1((akk)(2knm=k(1m(m+1))))=nk=1((k)(k+1))nk=1(2)×nk=1((akk)(2k(1k1n+1))2k(1k1n+1)=2(n+1kn+1)(n+1kn+1)12(n+1kn+1)2(akk)1(akk)2(n+1kn+1)(akk)2nk=1((k)(k+1))nk=1(2)×nk=1((akk)(2k(1k1n+1))nk=1((k)(k+1))nk=1(2)×nk=1((akk)(2))=n+12n(a12a22a32an2)nk=1(2ki=1(i×aii))(n+1)(a12a22a32an2)

Leave a Reply

Your email address will not be published. Required fields are marked *