a-1-a-2-a-3-a-n-gt-0-such-that-a-i-0-i-i-1-2-3-4-n-prove-that-2-n-a-1-a-1-a-2-a-1-a-2-a-n-n-1-a-1-2-a-2-2-a-n-2- Tinku Tara July 12, 2023 Algebra 0 Comments FacebookTweetPin Question Number 194634 by York12 last updated on 12/Jul/23 a1,a2,a3,….,an>0suchthatai∈[0,i]∀i∈{1,2,3,4,…,n}provethat2n.a1(a1+a2)…(a1+a2+…+an)⩾(n+1)(a12.a22…an2) Answered by York12 last updated on 12/Jul/23 a1+a2+a3+…+ak=1×a11+2×a22+3×a33+…k×akk∑ki=1(i×aii)∑ki=1(i)⩾∏ki=1((aii)i∑ki=1(i))⇒∑ki=1(i×aii)⩾∑ki=1(i)×∏ki=1((aii)i∑ki=1(i))⇒∏nk=1(∑ki=1(i×aii))⩾∏nk=1(∑ki=1(i)×∏ki=1((aii)i∑ki=1(i))=∏nk=1(∑ki=1(i))×∏nk=1(∏ki=1((aii)i∑ki=1(i))=∏nk=1((k)(k+1))∏nk=1(2)×∏nk=1((akk)(2k∑nm=k(1m(m+1))))1m(m+1)=1m−1m+1⇒∑nm=k(1m(m+1))=∑nm=k(1m)−∑nm=k(1m+1)=(1k−1n+1)∏nk=1((k)(k+1))∏nk=1(2)×∏nk=1((akk)(2k∑nm=k(1m(m+1))))=∏nk=1((k)(k+1))∏nk=1(2)×∏nk=1((akk)(2k(1k−1n+1))2k(1k−1n+1)=2(n+1−kn+1)(n+1−kn+1)⩽1⇒2(n+1−kn+1)⩽2(akk)⩽1⇒(akk)2(n+1−kn+1)⩾(akk)2∏nk=1((k)(k+1))∏nk=1(2)×∏nk=1((akk)(2k(1k−1n+1))⩾∏nk=1((k)(k+1))∏nk=1(2)×∏nk=1((akk)(2))=n+12n(a12a22a32…an2)⇒∏nk=1(2∑ki=1(i×aii))⩾(n+1)(a12a22a32…an2)▽ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-2-4sin-2-t-cos-2-t-dt-Next Next post: Prove-that-n-IN-k-1-2-n-1-1-sin-2-kpi-2-n-1-2-2n-1-2-3-Give-in-terms-of-n-k-1-2-n-1-1-sin-4-kpi-2-n-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.