Menu Close

If-A-a-b-c-b-c-a-c-a-b-and-a-b-c-gt-0-such-that-abc-1-and-A-T-A-I-find-a-3-b-3-c-3-3abc-




Question Number 194642 by horsebrand11 last updated on 12/Jul/23
 If A= (((a    b      c)),((b    c      a)),((c     a      b)) ) and a,b,c >0    such that abc=1 and A^T .A=I   find a^3 +b^3 +c^3 −3abc .
IfA=(abcbcacab)anda,b,c>0suchthatabc=1andAT.A=Ifinda3+b3+c33abc.
Answered by som(math1967) last updated on 12/Jul/23
 A.A^T =I   ((a,b,c),(b,c,a),(c,a,b) ) ((a,b,c),(b,c,a),(c,a,b) )= ((1,0,0),(0,1,0),(0,0,1) )   (((a^2 +b^2 +c^2 ),(ab+bc+ca),(ab+bc+ca)),((ab+bc+ca),(a^2 +b^2 +c^2 ),(ab+bc+ca)),((ab+bc+ca),(ab+bc+ca),(a^2 +b^2 +c^2 )) )  = ((1,0,0),(0,1,0),(0,0,1) )  ∴a^2 +b^2 +c^2 =1  ab+bc+ca=0  (a+b+c)^2 =a^2 +b^2 +c^2 +2(ab+bc+ca)  (a+b+c)=(√(1+0))=1     [a,b,c>0]  a^3 +b^3 +c^3 −3abc  (a+b+c)(a^2 +b^2 +c^2 −ab−bc−ca)  =1×1=1
A.AT=I(abcbcacab)(abcbcacab)=(100010001)(a2+b2+c2ab+bc+caab+bc+caab+bc+caa2+b2+c2ab+bc+caab+bc+caab+bc+caa2+b2+c2)=(100010001)a2+b2+c2=1ab+bc+ca=0(a+b+c)2=a2+b2+c2+2(ab+bc+ca)(a+b+c)=1+0=1[a,b,c>0]a3+b3+c33abc(a+b+c)(a2+b2+c2abbcca)=1×1=1
Answered by cortano12 last updated on 12/Jul/23
  A^T A=I   ∣A∣^2 = 1   ∣A∣=a(bc−a^2 )−b(b^2 −ac)+c(ab−c^2 )=±1   3abc−(a^3 +b^3 +c^3 )= ± 1    determinant (((a^3 +b^3 +c^3 −3abc=∓ 1)))
ATA=IA2=1A∣=a(bca2)b(b2ac)+c(abc2)=±13abc(a3+b3+c3)=±1a3+b3+c33abc=1
Commented by manxsol last updated on 14/Jul/23
muy bien
muybien

Leave a Reply

Your email address will not be published. Required fields are marked *