Menu Close

find-all-function-f-R-R-such-that-x-y-R-f-x-f-y-f-f-y-xf-y-f-x-1-




Question Number 194688 by CrispyXYZ last updated on 13/Jul/23
find all function f: R → R such that ∀x, y∈R,  f(x−f(y))=f(f(y))+xf(y)+f(x)−1.
$$\mathrm{find}\:\mathrm{all}\:\mathrm{function}\:{f}:\:\mathbb{R}\:\rightarrow\:\mathbb{R}\:\mathrm{such}\:\mathrm{that}\:\forall{x},\:{y}\in\mathbb{R}, \\ $$$${f}\left({x}−{f}\left({y}\right)\right)={f}\left({f}\left({y}\right)\right)+{xf}\left({y}\right)+{f}\left({x}\right)−\mathrm{1}. \\ $$
Answered by Tinku Tara last updated on 13/Jul/23
put x=f(y)  f(0)=f(x)+x^2 +f(x)−1  f(0)=c  f(x)=((1+c−x^2 )/2)  put y=0  f(x−c)=f(c)+cx+f(x)−1  ((1+c−(x−c)^2 )/2)=((1+c−c^2 )/2)+cx+((1+c−x^2 )/2)−1  ((1+c−x^2 )/2)+cx−(c^2 /2)=((1+c−c^2 )/2)+cx+((1+c−x^2 )/2)−1  ((1+c)/2)−1=0⇒c=1  f(x)=1−(x^2 /2)
$${put}\:{x}={f}\left({y}\right) \\ $$$${f}\left(\mathrm{0}\right)={f}\left({x}\right)+{x}^{\mathrm{2}} +{f}\left({x}\right)−\mathrm{1} \\ $$$${f}\left(\mathrm{0}\right)={c} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}+{c}−{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${put}\:{y}=\mathrm{0} \\ $$$${f}\left({x}−{c}\right)={f}\left({c}\right)+{cx}+{f}\left({x}\right)−\mathrm{1} \\ $$$$\frac{\mathrm{1}+{c}−\left({x}−{c}\right)^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{1}+{c}−{c}^{\mathrm{2}} }{\mathrm{2}}+{cx}+\frac{\mathrm{1}+{c}−{x}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{1} \\ $$$$\frac{\mathrm{1}+{c}−{x}^{\mathrm{2}} }{\mathrm{2}}+{cx}−\frac{{c}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{1}+{c}−{c}^{\mathrm{2}} }{\mathrm{2}}+{cx}+\frac{\mathrm{1}+{c}−{x}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{1} \\ $$$$\frac{\mathrm{1}+{c}}{\mathrm{2}}−\mathrm{1}=\mathrm{0}\Rightarrow{c}=\mathrm{1} \\ $$$${f}\left({x}\right)=\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$
Commented by CrispyXYZ last updated on 14/Jul/23
Thank you!
$$\mathrm{Thank}\:\mathrm{you}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *