Menu Close

0-1-0-1-1-x-2-1-x-2-y-2-dxdy-




Question Number 194759 by horsebrand11 last updated on 15/Jul/23
    ∫_0 ^( 1)  ∫_0 ^( 1)  (((1+x^2 )/(1+x^2 +y^2 ))) dxdy
$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\left(\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\right)\:\mathrm{dxdy}\: \\ $$
Commented by Frix last updated on 15/Jul/23
I get (1/2)+(((√2)tan^(−1)  (√2))/4)
$$\mathrm{I}\:\mathrm{get}\:\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \:\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$
Answered by dimentri last updated on 15/Jul/23
  ∫_0 ^( 1)  ∫_0 ^( 1) (((1+x^2 )/(1+x^2 +y^2 )))dxdy    = (1/2)∫_0 ^1 ∫_0 ^1 (1+(1/(1+x^2 +y^2 )))dxdy   = (1/2) +(1/2)∫_0 ^1 ∫_0 ^1 ((1/(1+x^2 +y^2 )))dxdy   = (1/2)+∫_0 ^1 ∫_0 ^( x) ((1/(1+x^2 +y^2 )))dxdy    = (1/2)+∫_0 ^( π/4) ∫_0 ^( sec θ) ((1/(1+r^2 )))r dr dθ   = (1/2)+(1/2)∫_0 ^( π/4) ln (1+sec^2 θ)dθ   = (1/2)+(1/4)(2G−π ln 2)
$$\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right){dxdy}\: \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right){dxdy} \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right){dxdy} \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{2}}+\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\:{x}} \left(\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right){dxdy}\: \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{2}}+\int_{\mathrm{0}} ^{\:\pi/\mathrm{4}} \int_{\mathrm{0}} ^{\:\mathrm{sec}\:\theta} \left(\frac{\mathrm{1}}{\mathrm{1}+{r}^{\mathrm{2}} }\right){r}\:{dr}\:{d}\theta \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\pi/\mathrm{4}} \mathrm{ln}\:\left(\mathrm{1}+\mathrm{sec}\:^{\mathrm{2}} \theta\right){d}\theta \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2}{G}−\pi\:\mathrm{ln}\:\mathrm{2}\right)\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *