Menu Close

b-




Question Number 194756 by horsebrand11 last updated on 15/Jul/23
      b
$$\:\:\:\:\:\:\underbrace{\boldsymbol{{b}}} \\ $$
Answered by cortano12 last updated on 15/Jul/23
  ((x−a)/( (√x)+(√a))) = ((x−a)/(3((√x)+(√a)))) +2(√a)   ((3(x−a))/(3((√x)+(√a))))−(((x−a))/(3((√x)+(√a)))) = 2(√a)    ((2(x−a))/(3((√x)+(√a)))) = 2(√a)      ⇒2x−2a = 6(√(ax))+6a      ⇒2x−8a = 6(√(ax))     ⇒x−4a = 3(√(ax))     ⇒x^2 −8ax+16a^2 = 9ax     ⇒x^2 −17ax+16a^2 =0    ⇒(x−16a)(x−a)=0, x=a (reject)     ⇒  determinant (((x=16a)))
$$\:\:\frac{\mathrm{x}−\mathrm{a}}{\:\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}}\:=\:\frac{\mathrm{x}−\mathrm{a}}{\mathrm{3}\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}\right)}\:+\mathrm{2}\sqrt{\mathrm{a}} \\ $$$$\:\frac{\mathrm{3}\left(\mathrm{x}−\mathrm{a}\right)}{\mathrm{3}\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}\right)}−\frac{\left(\mathrm{x}−\mathrm{a}\right)}{\mathrm{3}\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}\right)}\:=\:\mathrm{2}\sqrt{\mathrm{a}} \\ $$$$\:\:\frac{\mathrm{2}\left(\mathrm{x}−\mathrm{a}\right)}{\mathrm{3}\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}\right)}\:=\:\mathrm{2}\sqrt{\mathrm{a}} \\ $$$$\:\:\:\:\Rightarrow\mathrm{2x}−\mathrm{2a}\:=\:\mathrm{6}\sqrt{\mathrm{ax}}+\mathrm{6a} \\ $$$$\:\:\:\:\Rightarrow\mathrm{2x}−\mathrm{8a}\:=\:\mathrm{6}\sqrt{\mathrm{ax}} \\ $$$$\:\:\:\Rightarrow\mathrm{x}−\mathrm{4a}\:=\:\mathrm{3}\sqrt{\mathrm{ax}} \\ $$$$\:\:\:\Rightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{8ax}+\mathrm{16a}^{\mathrm{2}} =\:\mathrm{9ax} \\ $$$$\:\:\:\Rightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{17ax}+\mathrm{16a}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\Rightarrow\left(\mathrm{x}−\mathrm{16a}\right)\left(\mathrm{x}−\mathrm{a}\right)=\mathrm{0},\:\mathrm{x}=\mathrm{a}\:\left(\mathrm{reject}\right) \\ $$$$\:\:\:\Rightarrow\:\begin{array}{|c|}{\mathrm{x}=\mathrm{16a}}\\\hline\end{array} \\ $$$$\:\:\: \\ $$
Commented by Rasheed.Sindhi last updated on 15/Jul/23
x=a doesn′t satisfy in general.It  satisfies only when x=a=0.
$$\mathrm{x}=\mathrm{a}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{satisfy}\:\mathrm{in}\:\mathrm{general}.\mathrm{It} \\ $$$$\mathrm{satisfies}\:\mathrm{only}\:\mathrm{when}\:\mathrm{x}=\mathrm{a}=\mathrm{0}. \\ $$
Commented by cortano12 last updated on 15/Jul/23
yes sir. right
$$\mathrm{yes}\:\mathrm{sir}.\:\mathrm{right}\: \\ $$
Commented by Frix last updated on 15/Jul/23
x=a=0 is not allowed because ((...)/( (√x)+(√a))) ⇒  (√x)+(√a)≠0
$${x}={a}=\mathrm{0}\:\mathrm{is}\:\mathrm{not}\:\mathrm{allowed}\:\mathrm{because}\:\frac{…}{\:\sqrt{{x}}+\sqrt{{a}}}\:\Rightarrow \\ $$$$\sqrt{{x}}+\sqrt{{a}}\neq\mathrm{0} \\ $$
Commented by Rasheed.Sindhi last updated on 15/Jul/23
Sorry for mistake Sir!
$${Sorry}\:{for}\:{mistake}\:{Sir}! \\ $$
Answered by Rasheed.Sindhi last updated on 15/Jul/23
 ⋮  x−a
$$\:\underline{\vdots\cancel{\underbrace{ }}}\mathrm{x}−\mathrm{a} \\ $$
Answered by Frix last updated on 15/Jul/23
x>0∧a>0  (√x)+(√a)=t>0 ⇔ t−(√a)>0 ⇔ x=(t−(√a))^2   Inserting:  t−2(√a)=((t+4(√a))/3)  t=5(√a)  x=(5(√a)−(√a))^2 =16a
$${x}>\mathrm{0}\wedge{a}>\mathrm{0} \\ $$$$\sqrt{{x}}+\sqrt{{a}}={t}>\mathrm{0}\:\Leftrightarrow\:{t}−\sqrt{{a}}>\mathrm{0}\:\Leftrightarrow\:{x}=\left({t}−\sqrt{{a}}\right)^{\mathrm{2}} \\ $$$$\mathrm{Inserting}: \\ $$$${t}−\mathrm{2}\sqrt{{a}}=\frac{{t}+\mathrm{4}\sqrt{{a}}}{\mathrm{3}} \\ $$$${t}=\mathrm{5}\sqrt{{a}} \\ $$$${x}=\left(\mathrm{5}\sqrt{{a}}−\sqrt{{a}}\right)^{\mathrm{2}} =\mathrm{16}{a} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *