Menu Close

for-x-gt-0-find-the-minimum-of-the-function-f-x-x-3-5-x-




Question Number 194837 by mr W last updated on 16/Jul/23
for x>0 find the minimum of the  function f(x)=x^3 +(5/x).
$${for}\:{x}>\mathrm{0}\:{find}\:{the}\:{minimum}\:{of}\:{the} \\ $$$${function}\:{f}\left({x}\right)={x}^{\mathrm{3}} +\frac{\mathrm{5}}{{x}}. \\ $$
Answered by Frix last updated on 16/Jul/23
f′(x)=0  3x^2 −(5/x^2 )=0  x=±((5/3))^(1/4)   f(((5/3))^(1/4) )=4×((5/3))^(3/4)
$${f}'\left({x}\right)=\mathrm{0} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} −\frac{\mathrm{5}}{{x}^{\mathrm{2}} }=\mathrm{0} \\ $$$${x}=\pm\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$${f}\left(\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \right)=\mathrm{4}×\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} \\ $$
Answered by mr W last updated on 16/Jul/23
an other way:  f(x)=x^3 +(5/(3x))+(5/(3x))+(5/(3x))          ≥4(x^3 ×(5/(3x))×(5/(3x))×(5/(3x)))^(1/4) =4((5/3))^(3/4)   ⇒minimum=4((5/3))^(3/4)   when x^3 =(5/(3x)), i.e. x=((5/3))^(1/4)
$${an}\:{other}\:{way}: \\ $$$${f}\left({x}\right)={x}^{\mathrm{3}} +\frac{\mathrm{5}}{\mathrm{3}{x}}+\frac{\mathrm{5}}{\mathrm{3}{x}}+\frac{\mathrm{5}}{\mathrm{3}{x}} \\ $$$$\:\:\:\:\:\:\:\:\geqslant\mathrm{4}\left({x}^{\mathrm{3}} ×\frac{\mathrm{5}}{\mathrm{3}{x}}×\frac{\mathrm{5}}{\mathrm{3}{x}}×\frac{\mathrm{5}}{\mathrm{3}{x}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} =\mathrm{4}\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$$\Rightarrow{minimum}=\mathrm{4}\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$${when}\:{x}^{\mathrm{3}} =\frac{\mathrm{5}}{\mathrm{3}{x}},\:{i}.{e}.\:{x}=\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *