Menu Close

If-f-x-ax-2-5x-3-and-g-x-3x-3-intersection-at-points-1-h-and-3-t-Find-




Question Number 194809 by dimentri last updated on 16/Jul/23
    If f(x)=ax^2 −5x+3 and      g(x)=3x−3 intersection at   points (1,h) and (3,t).    Find
Iff(x)=ax25x+3andg(x)=3x3intersectionatpoints(1,h)and(3,t).Find
Answered by horsebrand11 last updated on 16/Jul/23
    f(x)=a(x−1)(x−3)+g(x)   ax^2 −5x+3 = ax^2 −4ax+3a+3x−3    ax^2 −5x+3=ax^2 −(4a−3)x+3(a−1)     { ((5=4a−3)),((1=a−1)) :}⇒ determinant (((a=2)))    ∴ f(x)=2x^2 −5x+3    f(2)−f(−2)=1−21= determinant (((−20)))
f(x)=a(x1)(x3)+g(x)ax25x+3=ax24ax+3a+3x3ax25x+3=ax2(4a3)x+3(a1){5=4a31=a1a=2f(x)=2x25x+3f(2)f(2)=121=20
Commented by dimentri last updated on 16/Jul/23
      x
x
Answered by Rasheed.Sindhi last updated on 16/Jul/23
f(1)=g(1)=h  a(1)^2 −5(1)+3=3(1)−3=h  a−2=0  a=2  f(x)=2x^2 −5x+3  f(2)−f(−2)      ={2(2)^2 −5(2)+3}−{2(−2)^2 −5(−2)+3}     =1−21=−20  •“(3,t) is intersection point”is  unnecessary.One common point  is sufficient here.
f(1)=g(1)=ha(1)25(1)+3=3(1)3=ha2=0a=2f(x)=2x25x+3f(2)f(2)={2(2)25(2)+3}{2(2)25(2)+3}=121=20(3,t)isintersectionpointisunnecessary.Onecommonpointissufficienthere.
Commented by dimentri last updated on 16/Jul/23

Leave a Reply

Your email address will not be published. Required fields are marked *