Menu Close

M-a-inside-poin-in-ABC-M-bar-A-area-MBC-B-area-MAC-C-area-MAB-




Question Number 194821 by sniper237 last updated on 16/Jul/23
M a inside poin in  ΔABC.  M = bar {(A, area(MBC)), (B, area(MAC)),(C,area(MAB))}
$${M}\:{a}\:{inside}\:{poin}\:{in}\:\:\Delta{ABC}. \\ $$$${M}\:=\:{bar}\:\left\{\left({A},\:{area}\left({MBC}\right)\right),\:\left({B},\:{area}\left({MAC}\right)\right),\left({C},{area}\left({MAB}\right)\right)\right\} \\ $$
Commented by mr W last updated on 16/Jul/23
what do mean with (A, area(MBC))?  what do mean with bar {X, Y, Z}?
$${what}\:{do}\:{mean}\:{with}\:\left({A},\:{area}\left({MBC}\right)\right)? \\ $$$${what}\:{do}\:{mean}\:{with}\:{bar}\:\left\{{X},\:{Y},\:{Z}\right\}? \\ $$
Commented by sniper237 last updated on 16/Jul/23
barycentric  sysrem of weighed poins   G=bary{(A,a) , (B,b) ,(C,c)} ⇔ aGA^→ +bGB^→ +cGC^→ =0^→   IA^→ +IB^→ =0^→  ⇔ I=bary{(A,1),(B,1)}
$${barycentric}\:\:{sysrem}\:{of}\:{weighed}\:{poins} \\ $$$$\:{G}={bary}\left\{\left({A},{a}\right)\:,\:\left({B},{b}\right)\:,\left({C},{c}\right)\right\}\:\Leftrightarrow\:{aG}\overset{\rightarrow} {{A}}+{bG}\overset{\rightarrow} {{B}}+{cG}\overset{\rightarrow} {{C}}=\overset{\rightarrow} {\mathrm{0}} \\ $$$${I}\overset{\rightarrow} {{A}}+{I}\overset{\rightarrow} {{B}}=\overset{\rightarrow} {\mathrm{0}}\:\Leftrightarrow\:{I}={bary}\left\{\left({A},\mathrm{1}\right),\left({B},\mathrm{1}\right)\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *