Menu Close

tan-19-p-tan-7-




Question Number 194826 by cortano12 last updated on 16/Jul/23
      tan 19° = p         tan 7° =?
$$\:\:\:\:\:\:\mathrm{tan}\:\mathrm{19}°\:=\:{p}\: \\ $$$$\:\:\:\:\:\:\mathrm{tan}\:\mathrm{7}°\:=? \\ $$
Answered by dimentri last updated on 16/Jul/23
   tan 38° = tan (45°−7)     ((2tan 19°)/(1−tan^2  19°)) = ((1−tan 7°)/(1+tan 7°))     ((−tan 7°+1)/(tan 7°+1)) = ((2p)/(1−p^2 ))     (p^2 −1) tan 7°+1−p^2 =2p tan 7°+2p    (p^2 −2p−1)tan 7°=p^2 +2p−1      determinant (((tan 7°=((p^2 +2p−1)/(p^2 −2p−1)))))
$$\:\:\:\mathrm{tan}\:\mathrm{38}°\:=\:\mathrm{tan}\:\left(\mathrm{45}°−\mathrm{7}\right) \\ $$$$\:\:\:\frac{\mathrm{2tan}\:\mathrm{19}°}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\mathrm{19}°}\:=\:\frac{\mathrm{1}−\mathrm{tan}\:\mathrm{7}°}{\mathrm{1}+\mathrm{tan}\:\mathrm{7}°} \\ $$$$\:\:\:\frac{−\mathrm{tan}\:\mathrm{7}°+\mathrm{1}}{\mathrm{tan}\:\mathrm{7}°+\mathrm{1}}\:=\:\frac{\mathrm{2}{p}}{\mathrm{1}−{p}^{\mathrm{2}} } \\ $$$$\:\:\:\left({p}^{\mathrm{2}} −\mathrm{1}\right)\:\mathrm{tan}\:\mathrm{7}°+\mathrm{1}−{p}^{\mathrm{2}} =\mathrm{2}{p}\:\mathrm{tan}\:\mathrm{7}°+\mathrm{2}{p} \\ $$$$\:\:\left({p}^{\mathrm{2}} −\mathrm{2}{p}−\mathrm{1}\right)\mathrm{tan}\:\mathrm{7}°={p}^{\mathrm{2}} +\mathrm{2}{p}−\mathrm{1} \\ $$$$\:\:\:\begin{array}{|c|}{\mathrm{tan}\:\mathrm{7}°=\frac{{p}^{\mathrm{2}} +\mathrm{2}{p}−\mathrm{1}}{{p}^{\mathrm{2}} −\mathrm{2}{p}−\mathrm{1}}}\\\hline\end{array} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *