Menu Close

Name-Zainab-Bibi-BC200400692-Assignmeng-No-2-Mth-621-solution-a-n-n-n-2-a-n-n-n-2-n-n-2-2-by-ratio-test-a-n-a-n-n-n-2-




Question Number 194851 by Guriya last updated on 17/Jul/23
Name   Zainab Bibi  BC200400692  Assignmeng No#2   Mth 621  solution..  a_n =(((n− )!)/((n+ )^2 ))  a_(n+ ) =(((n+ − )!)/((n+ + )^2 ))=(((n)!)/((n+2)^2 ))  by ratio test  (a_(n+ ) /a_n )=((((n)!)/((n+2)))/(((n− )!)/((n+ )^2 )))=(((n)!)/((n+2)^2 ))×(((n+ )^2 )/((n+ )!))  lim_(n→∞)  (a_(n+ ) /a_n )=lim_(n→∞) ((n(n− )!)/((n+2)^2 ))×(((n+ )^2 )/((n− )!))     ∵(n)!=n(n− )!  lim_(n→∞) (a_(n+ ) /a_n )=lim_(n→∞) ((n(n+ )^2 )/((n+2)^2 ))=lim_(n→∞) ((n(n^2 +1+2n))/(n^2 +4+4n))  lim_(n→∞) (((n^3 +n+2n^2 ))/(n^2 +4+4n))=lim_(n→∞) (((1+(1/n^2 )+(2/n)))/((1/n)+(1/n^3 )+(4/n^2 )))  Divided by n^3  to numerator and denominator   Now by Applying limit  (((1+(1/∞^(2 ) )+(2/∞)))/((1/∞)+(4/∞^3 )+(4/∞^2 )))=((1+0+0)/(0+0+0))=(1/0)=∞  lim_(n→∞) (a_(n+1) /a_n )=∞
NameZainabBibiBC200400692You can't use 'macro parameter character #' in math modeMth621solution..an=(n)!(n+)2an+=(n+)!(n++)2=(n)!(n+2)2byratiotestan+an=(n)!(n+2)(n)!(n+)2=(n)!(n+2)2×(n+)2(n+)!limnan+an=limnn(n)!(n+2)2×(n+)2(n)!(n)!=n(n)!limnan+an=limnn(n+)2(n+2)2=limnn(n2+1+2n)n2+4+4nlimn(n3+n+2n2)n2+4+4n=limn(1+1n2+2n)1n+1n3+4n2Dividedbyn3tonumeratoranddenominatorNowbyApplyinglimit(1+12+2)1+43+42=1+0+00+0+0=10=limnan+1an=
Commented by Frix last updated on 17/Jul/23
(1/0)=∞ is not allowed; instead use this:  (a_(n+ ) /a_n )=((((n)!)/((n+2)))/(((n− )!)/((n+ )^2 )))=(((n)!)/((n+2)^2 ))×(((n+ )^2 )/((n− )!))=  =n×((n^2 +2n+1)/(n^2 +4n+4))=n×(1+((2n+1)/(n^2 +4n+1)))  lim_(n→∞)  n =∞  lim_(n→∞)  1 =1  lim_(n→∞)  ((2n+1)/(n^2 +4n+1)) =0  ∞×(1+0)=∞
10=isnotallowed;insteadusethis:an+an=(n)!(n+2)(n)!(n+)2=(n)!(n+2)2×(n+)2(n)!==n×n2+2n+1n2+4n+4=n×(1+2n+1n2+4n+1)limnn=limn1=1limn2n+1n2+4n+1=0×(1+0)=

Leave a Reply

Your email address will not be published. Required fields are marked *