Prove-that-n-IN-1-0-t-sin-2n-lnt-dt-1-1-e-2pi-pi-0-e-2t-sin-2n-t-dt- Tinku Tara July 17, 2023 Set Theory 0 Comments FacebookTweetPin Question Number 194868 by Erico last updated on 17/Jul/23 Provethat∀n∈IN∫01tsin2n(lnt)dt=11−e−2π∫0πe−2tsin2n(t)dt Answered by witcher3 last updated on 17/Jul/23 ln(t)=−x⇒∫0∞e−2xsin2n(x)dx=∑k⩾0∫kπ(k+1)πe−2xsin2n(x)dxx→kπ+t=∑k⩾0∫0πe−2kπ−2tsin2n(kπ+t)dt=∑k⩾0e−2kπ∫0πe−2tsin2n(t)dt=∫0πe−2tsin2n(t)dt.∑k⩾0e−2kπ=11−e−2π∫0πe−2tsin2n(t)dt Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-0-cosx-log-x-Next Next post: Question-194853 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.