Menu Close

Give-ABC-Proof-sin-A-sin-B-sin-C-gt-2-




Question Number 194881 by tri26112004 last updated on 18/Jul/23
Give △ABC   Proof: sin A + sin B + sin C > 2
$${Give}\:\bigtriangleup{ABC}\: \\ $$$${Proof}:\:{sin}\:{A}\:+\:{sin}\:{B}\:+\:{sin}\:{C}\:>\:\mathrm{2} \\ $$
Answered by Frix last updated on 19/Jul/23
It′s not true.  0<sin A +sin B +sin C  ≤((3(√3))/2)
$$\mathrm{It}'\mathrm{s}\:\mathrm{not}\:\mathrm{true}. \\ $$$$\mathrm{0}<\mathrm{sin}\:{A}\:+\mathrm{sin}\:{B}\:+\mathrm{sin}\:{C}\:\:\leqslant\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$
Commented by tri26112004 last updated on 19/Jul/23
If it was acute triangle¿
$${If}\:{it}\:{was}\:{acute}\:{triangle}¿ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *