Menu Close

Question-194879




Question Number 194879 by tri26112004 last updated on 18/Jul/23
Answered by cortano12 last updated on 18/Jul/23
  = lim_(u→0)  (((1+2u)^u −1)/((1+3u)^u −1))           [ u =(1/x) ]   then apply L′Hopital     L= lim_(x→0)  (((1+2x)^x (ln (1+2x)+(2/(1+2x))))/((1+3x)^x (ln (1+3x)+(3/(1+3x)))))    =  determinant (((2/3)))
$$\:\:=\:\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\mathrm{2}{u}\right)^{{u}} −\mathrm{1}}{\left(\mathrm{1}+\mathrm{3}{u}\right)^{{u}} −\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\left[\:{u}\:=\frac{\mathrm{1}}{{x}}\:\right] \\ $$$$\:{then}\:{apply}\:{L}'{Hopital}\: \\ $$$$\:\:{L}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\mathrm{2}{x}\right)^{{x}} \left(\mathrm{ln}\:\left(\mathrm{1}+\mathrm{2}{x}\right)+\frac{\mathrm{2}}{\mathrm{1}+\mathrm{2}{x}}\right)}{\left(\mathrm{1}+\mathrm{3}{x}\right)^{{x}} \left(\mathrm{ln}\:\left(\mathrm{1}+\mathrm{3}{x}\right)+\frac{\mathrm{3}}{\mathrm{1}+\mathrm{3}{x}}\right)} \\ $$$$\:\:=\:\begin{array}{|c|}{\frac{\mathrm{2}}{\mathrm{3}}}\\\hline\end{array} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *