Menu Close

lim-x-x-2-5x-1-x-2-2x-1-x-2-3-x-2-4x-9-16x-2-8-




Question Number 194928 by cortano12 last updated on 19/Jul/23
      lim_(x→∞) ((√(x^2 +5x+1)) +(√(x^2 −2x+1))+(√(x^2 +3))+(√(x^2 −4x+9))−(√(16x^2 −8)) =?
$$\:\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1}}\:+\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{9}}−\sqrt{\mathrm{16}{x}^{\mathrm{2}} −\mathrm{8}}\:=?\right. \\ $$
Answered by horsebrand11 last updated on 20/Jul/23
  = (5/2)−(2/2)+(3/2)−(4/2)−0= (2/2)=1
$$\:\:=\:\frac{\mathrm{5}}{\mathrm{2}}−\frac{\mathrm{2}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{4}}{\mathrm{2}}−\mathrm{0}=\:\frac{\mathrm{2}}{\mathrm{2}}=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *