Menu Close

Let-P-x-x-2-x-2-b-and-Q-x-x-2-cx-d-be-two-polynomial-with-real-coefficients-such-that-P-x-Q-x-Q-P-x-for-all-real-x-Find-all-the-real-roots-of-P-Q-x-0-




Question Number 194953 by dimentri last updated on 20/Jul/23
 Let P(x)= x^2 +(x/2)+b and    Q(x)=x^2 +cx+d be two     polynomial with real coefficients    such that P(x)Q(x)= Q(P(x))   for all real x .    Find all the real roots of     P(Q(x))=0
LetP(x)=x2+x2+bandQ(x)=x2+cx+dbetwopolynomialwithrealcoefficientssuchthatP(x)Q(x)=Q(P(x))forallrealx.FindalltherealrootsofP(Q(x))=0
Answered by Rasheed.Sindhi last updated on 21/Jul/23
P(x)= x^2 +(x/2)+b , Q(x)=x^2 +cx+d  P(x)Q(x)= Q(P(x))  Real roots of P(Q(x))=0 ?    P(x)Q(x)= Q(P(x))  lhs:      P(x)Q(x)=(x^2 +(x/2)+b)(x^2 +cx+d)  =x^4 +cx^3 +dx^2           +(1/2)x^3 +(c/2)x^2 +(d/2)x                         +bx^2 +bcx+bd  =x^4 +(c+(1/2))x^3 +(b+d+(c/2))x^2 +(bc+(d/2))x+bd    rhs: Q(P(x))  Q(P(x))=(x^2 +(x/2)+b)^2 +c(x^2 +(x/2)+b)+d  =x^4 +(1/4)x^2 +b^2 +x^3 +bx+2bx^2 +cx^2 +(c/2)x+bc+d  =x^4 +x^3 +(1/4)x^2 +2bx^2 +cx^2 +bx+(c/2)x+b^2 +bc+d  =x^4 +x^3 +((1/4)+2b+c)x^2 +(b+(c/2))x+b^2 +bc+d    • c+(1/2)=1          c=(1/2)  •b+d+(c/2)=(1/4)+2b+c       b+d+(1/4)=(1/4)+2b+(1/2)   d=((2b+1)/2)  •bc+(d/2)=b+(c/2)         (b/2)+((2b+1)/4)=b+(1/4)    2b+2b+1=4b+1 No result  •bd=b^2 +bc+d    b(((2b+1)/2))=b^2 +(b/2)+((2b+1)/2)  2b^2 +b=2b^2 +b+2b+1  b=−(1/2)⇒d=((2b+1)/2)⇒d=0  P(x)= x^2 +(x/2)+b=x^2 +(x/2)−(1/2)=((2x^2 +x−1)/2)   Q(x)=x^2 +cx+d=x^2 +(1/2)x=((2x^2 +x)/2)    P(Q(x))=0  ((2(((2x^2 +x)/2))^2 +(((2x^2 +x)/2))−1)/2)=0  2(((2x^2 +x)/2))^2 +(((2x^2 +x)/2))−1=0  ((4x^4 +4x^3 +x^2 )/2)+((2x^2 +x)/2)−1=0  4x^4 +4x^3 +3x^2 +x−2=0  4x^4 +4x^3 +3x^2 +3x−2x−2=0  4x^3 (x+1)+3x(x+1)−2(x+1)=0  (x+1)(4x^3 +3x−2)=0  (x+1)(2x−1)(2x^2 +x+2)=0   { ((x+1=0⇒x=−1)),((2x−1=0⇒x=(1/2))),((2x^2 +x+2=0 (no real roots))) :}  x=−1,(1/2)
P(x)=x2+x2+b,Q(x)=x2+cx+dP(x)Q(x)=Q(P(x))RealrootsofP(Q(x))=0?P(x)Q(x)=Q(P(x))lhs:P(x)Q(x)=(x2+x2+b)(x2+cx+d)=x4+cx3+dx2+12x3+c2x2+d2x+bx2+bcx+bd=x4+(c+12)x3+(b+d+c2)x2+(bc+d2)x+bdrhs:Q(P(x))Q(P(x))=(x2+x2+b)2+c(x2+x2+b)+d=x4+14x2+b2+x3+bx+2bx2+cx2+c2x+bc+d=x4+x3+14x2+2bx2+cx2+bx+c2x+b2+bc+d=x4+x3+(14+2b+c)x2+(b+c2)x+b2+bc+dc+12=1c=12b+d+c2=14+2b+cb+d+14=14+2b+12d=2b+12bc+d2=b+c2b2+2b+14=b+142b+2b+1=4b+1Noresultbd=b2+bc+db(2b+12)=b2+b2+2b+122b2+b=2b2+b+2b+1b=12d=2b+12d=0P(x)=x2+x2+b=x2+x212=2x2+x12Q(x)=x2+cx+d=x2+12x=2x2+x2P(Q(x))=02(2x2+x2)2+(2x2+x2)12=02(2x2+x2)2+(2x2+x2)1=04x4+4x3+x22+2x2+x21=04x4+4x3+3x2+x2=04x4+4x3+3x2+3x2x2=04x3(x+1)+3x(x+1)2(x+1)=0(x+1)(4x3+3x2)=0(x+1)(2x1)(2x2+x+2)=0{x+1=0x=12x1=0x=122x2+x+2=0(norealroots)x=1,12
Commented by dimentri last updated on 21/Jul/23

Leave a Reply

Your email address will not be published. Required fields are marked *