Menu Close

Question-194931




Question Number 194931 by sonukgindia last updated on 20/Jul/23
Answered by HeferH last updated on 20/Jul/23
Commented by HeferH last updated on 20/Jul/23
6x = 2(180°−7x)   3x = 180°−7x   10x = 180°   x = 18°
$$\mathrm{6}{x}\:=\:\mathrm{2}\left(\mathrm{180}°−\mathrm{7}{x}\right) \\ $$$$\:\mathrm{3}{x}\:=\:\mathrm{180}°−\mathrm{7}{x} \\ $$$$\:\mathrm{10}{x}\:=\:\mathrm{180}° \\ $$$$\:{x}\:=\:\mathrm{18}°\: \\ $$
Answered by MM42 last updated on 20/Jul/23
B=180−7x  &  D=180−6x  ((AB)/(sin3x))=((AC)/(sin7x))   &  ((AB)/(sin4x))=((AC)/(sin6x))  ⇒sin3x×sin6x=sin7x×si4x  ⇒cos11x=cos9x⇒x=(π/(10))=18 ✓
$${B}=\mathrm{180}−\mathrm{7}{x}\:\:\&\:\:{D}=\mathrm{180}−\mathrm{6}{x} \\ $$$$\frac{{AB}}{{sin}\mathrm{3}{x}}=\frac{{AC}}{{sin}\mathrm{7}{x}}\:\:\:\&\:\:\frac{{AB}}{{sin}\mathrm{4}{x}}=\frac{{AC}}{{sin}\mathrm{6}{x}} \\ $$$$\Rightarrow{sin}\mathrm{3}{x}×{sin}\mathrm{6}{x}={sin}\mathrm{7}{x}×{si}\mathrm{4}{x} \\ $$$$\Rightarrow{cos}\mathrm{11}{x}={cos}\mathrm{9}{x}\Rightarrow{x}=\frac{\pi}{\mathrm{10}}=\mathrm{18}\:\checkmark \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *