Question Number 194968 by cortano12 last updated on 21/Jul/23
Answered by tri26112004 last updated on 21/Jul/23
$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\:\sqrt{{x}+\mathrm{1}}+\sqrt{\mathrm{1}−{x}}}.−\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{x}+\mathrm{1}}+\sqrt{\mathrm{1}−{x}}−\mathrm{2}}{{x}^{\mathrm{2}} } \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}.\left\{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\left[\sqrt{\mathrm{4}{x}+\mathrm{4}}−\left({x}+\mathrm{2}\right)\right]+\sqrt{\mathrm{1}−{x}}+\frac{\mathrm{1}}{\mathrm{2}}{x}−\mathrm{1}}{{x}^{\mathrm{2}} }\right\} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}.\left[\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{2}}.\frac{−\mathrm{1}}{\:\sqrt{\mathrm{4}{x}+\mathrm{4}}+{x}+\mathrm{2}}+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{4}}.\frac{\mathrm{1}}{\:\left(\frac{\mathrm{1}}{\mathrm{2}}{x}−\mathrm{1}\right)−\sqrt{\mathrm{1}−{x}}}\right] \\ $$$$=\:−\frac{\mathrm{1}}{\mathrm{2}}.\left(\frac{\mathrm{1}}{\mathrm{2}}.\frac{−\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}.\frac{\mathrm{1}}{−\mathrm{2}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{8}} \\ $$
Answered by dimentri last updated on 21/Jul/23
$$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\frac{\mathrm{2}{x}}{\:\sqrt{{x}+\mathrm{1}}\:+\sqrt{\mathrm{1}−{x}}}\:−{x}}{{x}^{\mathrm{3}} }\:\right) \\ $$$$\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}.\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{2}−\sqrt{\mathrm{1}+{x}}−\sqrt{\mathrm{1}−{x}}}{{x}^{\mathrm{2}} }\:\right) \\ $$$$\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}.\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\frac{−{x}}{\mathrm{1}+\sqrt{\mathrm{1}+{x}}}\:+\:\frac{{x}}{\mathrm{1}+\sqrt{\mathrm{1}−{x}}}}{{x}^{\mathrm{2}} }\:\right) \\ $$$$\:\:=\:\frac{\mathrm{1}}{\mathrm{8}}.\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\sqrt{\mathrm{1}+{x}}\:−\sqrt{\mathrm{1}−{x}}}{{x}}\right) \\ $$$$\:\:=\:\frac{\mathrm{1}}{\mathrm{8}}.\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{2}{x}}{{x}\left(\sqrt{\mathrm{1}+{x}}\:+\sqrt{\mathrm{1}−{x}}\:\right)}\:\right) \\ $$$$\:\:=\:\frac{\mathrm{1}}{\mathrm{8}} \\ $$
Commented by mathlove last updated on 22/Jul/23
$${whay}\: \\ $$$$\frac{\sqrt{\mathrm{1}+{x}}−\sqrt{\mathrm{1}−{x}}−{x}}{{x}^{\mathrm{3}} }=\frac{\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{1}+{x}}+\sqrt{\mathrm{1}−{x}}}−{x}}{{x}^{\mathrm{3}} } \\ $$
Commented by dimentri last updated on 22/Jul/23
$$\:\:\frac{\sqrt{\mathrm{1}+{x}}−\sqrt{\mathrm{1}−{x}}\:.\frac{\sqrt{\mathrm{1}+{x}}\:+\sqrt{\mathrm{1}−{x}}}{\:\sqrt{\mathrm{1}+{x}}+\sqrt{\mathrm{1}−{x}}}\:−{x}}{{x}^{\mathrm{3}} } \\ $$$$\:=\:\frac{\frac{\left(\mathrm{1}+{x}\right)−\left(\mathrm{1}−{x}\right)}{\:\sqrt{\mathrm{1}+{x}}\:+\sqrt{\mathrm{1}−{x}}}\:−{x}}{{x}^{\mathrm{3}} } \\ $$