Menu Close

a-3-x-3-x-2-a-1-x-7-0-is-a-cubic-polynomial-in-x-whose-Roots-are-positive-real-numbers-satisfying-225-2-2-7-144-2-2-7-100-2-2-7-find-a-1-




Question Number 195027 by York12 last updated on 22/Jul/23
a_3 x^3 −x^2 +a_1 x−7=0 is a cubic polynomial in x  whose Roots are α , β , γ positive real numbers  satisfying  ((225α^2 )/(α^2 +7))=((144β^2 )/(β^2 +7))=((100γ^2 )/(γ^2 +7))  find (a_1 )
a3x3x2+a1x7=0isacubicpolynomialinxwhoseRootsareα,β,γpositiverealnumberssatisfying225α2α2+7=144β2β2+7=100γ2γ2+7find(a1)
Commented by mr W last updated on 25/Jul/23
i got a_1 =((77)/(15))
igota1=7715
Commented by York12 last updated on 25/Jul/23
please sir explain why
pleasesirexplainwhy
Answered by mr W last updated on 25/Jul/23
⇒α+β+γ=(1/a_3 )  ((1/x))^3 −(a_1 /7)((1/x))^2 +(1/7)((1/x))−(a_3 /7)=0  ⇒(a_1 /7)=(1/α)+(1/β)+(1/γ)    a_3 x^3 −x^2 +a_1 x−7=0  x^2 +7=x(a_3 x^2 +a_1 )  ((225α^2 )/(α^2 +7))=((144β^2 )/(β^2 +7))=((100γ^2 )/(γ^2 +7))=(1/k), say  ((225α^2 )/(α(a_3 α^2 +a_1 )))=((144β^2 )/(β(a_3 β^2 +a_1 )))=((100γ^2 )/(γ(a_3 γ^2 +a_1 )))=(1/k)  ⇒a_3 α+(a_1 /α)=225k  ⇒a_3 β+(a_1 /β)=144k  ⇒a_3 γ+(a_1 /γ)=100k  ⇒a_3 (α+β+γ)+a_1 ((1/α)+(1/β)+(1/γ))=469k  ⇒1+(a_1 ^2 /7)=469k  ⇒a_1 =(√(7(469k−1)))    ((225)/(1+(7/α^2 )))=((144)/(1+(7/β^2 )))=((100)/(1+(7/γ^2 )))=(1/k)  ⇒((√7)/α)=(√(225k−1))  ⇒((√7)/β)=(√(144k−1))  ⇒((√7)/γ)=(√(100k−1))  (√7)((1/α)+(1/β)+(1/γ))=(√(225k−1))+(√(144k−1))+(√(100k−1))  (a_1 /( (√7)))=(√(225k−1))+(√(144k−1))+(√(100k−1))  ⇒(√(469k−1))=(√(225k−1))+(√(144k−1))+(√(100k−1))  ⇒(√(225k−1))+(√(144k−1))=(√(469k−1))−(√(100k−1))  ⇒(√((225k−1)(144k−1)))=100k−(√((469k−1)(100k−1)))  ⇒245k−2=2(√((469k−1)(100k−1)))  ⇒127575k=1296  ⇒k=((1296)/(127575))=((16)/(1575))  a_1 =(√(7(((469×16)/(1575))−1)))=((77)/(15)) ✓    α=(√(7/(225×((16)/(1575))−1)))=(7/3)  β=(√(7/(144×((16)/(1575))−1)))=((35)/9)  γ=(√(7/(100×((16)/(1575))−1)))=21  a_3 =(1/((7/3)+((35)/9)+21))=(9/(245))
α+β+γ=1a3(1x)3a17(1x)2+17(1x)a37=0a17=1α+1β+1γa3x3x2+a1x7=0x2+7=x(a3x2+a1)225α2α2+7=144β2β2+7=100γ2γ2+7=1k,say225α2α(a3α2+a1)=144β2β(a3β2+a1)=100γ2γ(a3γ2+a1)=1ka3α+a1α=225ka3β+a1β=144ka3γ+a1γ=100ka3(α+β+γ)+a1(1α+1β+1γ)=469k1+a127=469ka1=7(469k1)2251+7α2=1441+7β2=1001+7γ2=1k7α=225k17β=144k17γ=100k17(1α+1β+1γ)=225k1+144k1+100k1a17=225k1+144k1+100k1469k1=225k1+144k1+100k1225k1+144k1=469k1100k1(225k1)(144k1)=100k(469k1)(100k1)245k2=2(469k1)(100k1)127575k=1296k=1296127575=161575a1=7(469×1615751)=7715α=7225×1615751=73β=7144×1615751=359γ=7100×1615751=21a3=173+359+21=9245
Commented by York12 last updated on 25/Jul/23
thanks so much
thankssomuch

Leave a Reply

Your email address will not be published. Required fields are marked *