Menu Close

i-




Question Number 195035 by mathlove last updated on 22/Jul/23
(√i)=?
$$\sqrt{{i}}=? \\ $$
Answered by alephzero last updated on 22/Jul/23
(√i) = ?  ((√i))^2  = i  e^(iπ)  = −1  (√e^(iπ) ) = e^(i(π/2))  = i  (√e^(i(π/2)) ) = e^(i(π/4))  = (√i)  e^(ix)  = cos x + i sin x  e^(i(π/4))  = ((√2)/2) + i ((√2)/2)  ⇒ (√i) = ((√2)/2) + i ((√2)/2)
$$\sqrt{{i}}\:=\:? \\ $$$$\left(\sqrt{{i}}\right)^{\mathrm{2}} \:=\:{i} \\ $$$${e}^{{i}\pi} \:=\:−\mathrm{1} \\ $$$$\sqrt{{e}^{{i}\pi} }\:=\:{e}^{{i}\frac{\pi}{\mathrm{2}}} \:=\:{i} \\ $$$$\sqrt{{e}^{{i}\frac{\pi}{\mathrm{2}}} }\:=\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:=\:\sqrt{{i}} \\ $$$${e}^{{ix}} \:=\:\mathrm{cos}\:{x}\:+\:{i}\:\mathrm{sin}\:{x} \\ $$$${e}^{{i}\frac{\pi}{\mathrm{4}}} \:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:+\:{i}\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\Rightarrow\:\sqrt{{i}}\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:+\:{i}\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$
Commented by mathlove last updated on 23/Jul/23
thanks sir
$${thanks}\:{sir} \\ $$
Answered by Frix last updated on 22/Jul/23
i=e^(i(π/2))   (√i)=i^(1/2) =e^(i(π/4))
$$\mathrm{i}=\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{2}}} \\ $$$$\sqrt{\mathrm{i}}=\mathrm{i}^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *