Menu Close

prove-that-x-y-1-x-y-




Question Number 195038 by sciencestudentW last updated on 22/Jul/23
prove that x+y=(1/(x−y))
$${prove}\:{that}\:{x}+{y}=\frac{\mathrm{1}}{{x}−{y}} \\ $$
Commented by Frix last updated on 22/Jul/23
It′s wrong, i.e. x=2∧y=3 ⇒   x+y=5 but (1/(x−y))=−1    You can solve for x or y  x+y=(1/(x−y)) ⇒ x≠y  (x+y)(x−y)=1  x^2 −y^2 =1  x=±(√(y^2 +1))  y=±(√(x^2 −1))
$$\mathrm{It}'\mathrm{s}\:\mathrm{wrong},\:\mathrm{i}.\mathrm{e}.\:{x}=\mathrm{2}\wedge{y}=\mathrm{3}\:\Rightarrow\: \\ $$$${x}+{y}=\mathrm{5}\:\mathrm{but}\:\frac{\mathrm{1}}{{x}−{y}}=−\mathrm{1} \\ $$$$ \\ $$$$\mathrm{You}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{for}\:{x}\:\mathrm{or}\:{y} \\ $$$${x}+{y}=\frac{\mathrm{1}}{{x}−{y}}\:\Rightarrow\:{x}\neq{y} \\ $$$$\left({x}+{y}\right)\left({x}−{y}\right)=\mathrm{1} \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{1} \\ $$$${x}=\pm\sqrt{{y}^{\mathrm{2}} +\mathrm{1}} \\ $$$${y}=\pm\sqrt{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *