Question Number 195043 by necx122 last updated on 22/Jul/23
Commented by necx122 last updated on 22/Jul/23
$${Please},\:{I}\:{meed}\:{help}\:{with}\:{this}.\:{It}'{s}\:{quite} \\ $$$${tricky}\:{for}\:{me}\:{to}\:{tackle}. \\ $$
Answered by a.lgnaoui last updated on 23/Jul/23
$$\:\bullet\boldsymbol{\mathrm{C}}\mathrm{ote}\:\boldsymbol{\mathrm{AB}}=\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}} \\ $$$$\:\begin{cases}{\mathrm{sin}\:\boldsymbol{\alpha}=\frac{\mathrm{2}}{\mathrm{a}}\Rightarrow\:\:\boldsymbol{\mathrm{a}}=\frac{\mathrm{2}}{\mathrm{sin}\:\boldsymbol{\alpha}}}\\{\mathrm{cos}\:\boldsymbol{\alpha}=\frac{\mathrm{2}}{\mathrm{b}}\Rightarrow\boldsymbol{\mathrm{b}}=\frac{\mathrm{2}}{\mathrm{cos}\:\boldsymbol{\alpha}}}\end{cases} \\ $$$$\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}=\mathrm{2}\left(\frac{\mathrm{sin}\:\boldsymbol{\alpha}+\mathrm{cos}\:\alpha}{\mathrm{sin}\:\boldsymbol{\alpha}\mathrm{cos}\:\boldsymbol{\alpha}}\right) \\ $$$$ \\ $$$$\bullet\boldsymbol{\mathrm{Cote}}\:\:\boldsymbol{\mathrm{AC}}=\boldsymbol{\mathrm{c}}+\boldsymbol{\mathrm{d}}+\boldsymbol{\mathrm{e}} \\ $$$$\:\:\begin{cases}{\mathrm{sin}\:\left(\mathrm{90}β\boldsymbol{\alpha}\right)=\frac{\mathrm{3}}{\mathrm{c}}\Rightarrow\:\:\boldsymbol{\mathrm{c}}=\frac{\mathrm{3}}{\mathrm{cos}\:\boldsymbol{\alpha}}}\\{\mathrm{sin}\:\left(\mathrm{90}β\boldsymbol{\alpha}\right)=\frac{\mathrm{2}}{\boldsymbol{\mathrm{d}}}=\frac{\mathrm{1}}{\boldsymbol{\mathrm{e}}}}\end{cases} \\ $$$$\Rightarrow\boldsymbol{\mathrm{c}}=\frac{\mathrm{3}}{\mathrm{cos}\:\boldsymbol{\alpha}}\:\:;\boldsymbol{\mathrm{d}}=\frac{\mathrm{2}}{\mathrm{cos}\:\boldsymbol{\alpha}}\:;\:\:\boldsymbol{\mathrm{e}}=\frac{\boldsymbol{\mathrm{d}}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{alors}}\:\::\:\:\boldsymbol{\mathrm{AC}}=\boldsymbol{\mathrm{c}}+\boldsymbol{\mathrm{d}}+\boldsymbol{\mathrm{d}}=\frac{\mathrm{6}}{\mathrm{cos}\:\boldsymbol{\alpha}} \\ $$$$\:\:\boldsymbol{\mathrm{AB}}=\boldsymbol{\mathrm{AC}}\:\:\:\left(\boldsymbol{\mathrm{quadrilatere}}=\boldsymbol{\mathrm{care}}\right) \\ $$$$\Rightarrow\frac{\mathrm{6}}{\mathrm{cos}\:\boldsymbol{\alpha}}=\frac{\mathrm{2}\left(\mathrm{sin}\:\boldsymbol{\alpha}+\mathrm{cos}\:\boldsymbol{\alpha}\right.}{\mathrm{sin}\:\boldsymbol{\alpha}\mathrm{cos}\:\boldsymbol{\alpha}}\:\:\: \\ $$$$\:\:\mathrm{4sin}\:\boldsymbol{\alpha}\mathrm{cos}\:\boldsymbol{\alpha}=\mathrm{sin}\:\boldsymbol{\alpha}\mathrm{cos}\:\boldsymbol{\alpha}+\mathrm{cos}\:^{\mathrm{2}} \boldsymbol{\alpha} \\ $$$$\mathrm{4}=\mathrm{1}+\frac{\mathrm{cos}\:\boldsymbol{\alpha}}{\mathrm{sin}\:\boldsymbol{\alpha}}\:\:\:\Rightarrow\:\:\:\mathrm{tan}\:\boldsymbol{\alpha}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:\:\:\boldsymbol{\alpha}=\:\:\mathrm{18},\mathrm{43} \\ $$$$\boldsymbol{\mathrm{donc}}\:\:\boldsymbol{\mathrm{AB}}=\boldsymbol{\mathrm{AC}}=\frac{\mathrm{6}}{\mathrm{cos}\:\boldsymbol{\alpha}}=\mathrm{6}\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \boldsymbol{\alpha}} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{cote}}\:\boldsymbol{\mathrm{du}}\:\boldsymbol{\mathrm{care}}\:\:\:\:\:=\mathrm{6}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{9}}}\:=\mathrm{2}\sqrt{\mathrm{10}\:}\: \\ $$$$ \\ $$$$\:\:\:\Rightarrow\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Aire}}\:\boldsymbol{\mathrm{du}}\:\boldsymbol{\mathrm{Care}}=\:\mathrm{40} \\ $$$$ \\ $$
Commented by a.lgnaoui last updated on 23/Jul/23
Commented by JDamian last updated on 23/Jul/23
$$\mathrm{I}\:\mathrm{get}\:\mathrm{45}\:\mathrm{without}\:\mathrm{trigonometric}\:\mathrm{expressions} \\ $$
Commented by JDamian last updated on 23/Jul/23
$$\frac{\mathrm{6}}{\cancel{\mathrm{cos}\:\boldsymbol{\alpha}}}=\frac{\mathrm{2}\left(\mathrm{sin}\:\boldsymbol{\alpha}+\mathrm{cos}\:\boldsymbol{\alpha}\right)}{\mathrm{sin}\:\boldsymbol{\alpha}\cancel{\mathrm{cos}\:\boldsymbol{\alpha}}} \\ $$$$\mathrm{3}=\frac{\mathrm{sin}\:\boldsymbol{\alpha}+\mathrm{cos}\:\boldsymbol{\alpha}}{\mathrm{sin}\:\boldsymbol{\alpha}}=\mathrm{1}+\frac{\mathrm{cos}\:\boldsymbol{\alpha}}{\mathrm{sin}\:\boldsymbol{\alpha}} \\ $$$$\mathrm{2}=\frac{\mathrm{cos}\:\boldsymbol{\alpha}}{\mathrm{sin}\:\boldsymbol{\alpha}} \\ $$$$\mathrm{tan}\:\boldsymbol{\alpha}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{donc}}\:\:\boldsymbol{\mathrm{AB}}=\boldsymbol{\mathrm{AC}}=\mathrm{6}\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \boldsymbol{\alpha}}= \\ $$$$=\mathrm{6}\sqrt{\mathrm{1}+\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }=\mathrm{6}\sqrt{\frac{\mathrm{5}}{\mathrm{4}}}=\mathrm{3}\sqrt{\mathrm{5}} \\ $$
Commented by a.lgnaoui last updated on 23/Jul/23
$$\mathrm{correction}\left(\mathrm{erreur}\:\mathrm{calcul}\right) \\ $$$$\mathrm{3}=\mathrm{1}+\frac{\mathrm{cos}\:\alpha}{\mathrm{sin}\:\alpha}\:\Rightarrow\mathrm{tan}\:\alpha=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{Cote}=\frac{\mathrm{6}}{\mathrm{cos}\:\alpha}=\mathrm{6}\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \alpha}\:=\mathrm{3}\sqrt{\mathrm{5}} \\ $$$$\mathrm{Aire}=\mathrm{45} \\ $$$$ \\ $$
Commented by necx122 last updated on 23/Jul/23
$${Also}\:{clear}. \\ $$
Answered by mr W last updated on 23/Jul/23
Commented by mr W last updated on 23/Jul/23
$$\mathrm{tan}\:\theta=\frac{\mathrm{2}}{\mathrm{3}β\mathrm{1}}=\mathrm{2} \\ $$$$\frac{\mathrm{6}}{{a}}=\mathrm{sin}\:\theta=\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}} \\ $$$$\Rightarrow{a}=\mathrm{3}\sqrt{\mathrm{5}} \\ $$$${area}\:{of}\:{square}\:={a}^{\mathrm{2}} =\left(\mathrm{3}\sqrt{\mathrm{5}}\right)^{\mathrm{2}} =\mathrm{45} \\ $$
Commented by necx122 last updated on 23/Jul/23
$${Thank}\:{you}\:{so}\:{much}.\:{Its}\:{very}\:{clear}. \\ $$