Menu Close

lim-x-1-4x-5-x-x-2-




Question Number 195092 by mathlove last updated on 24/Jul/23
lim_(x→1^+ )  ((4x+5)/(x−x^2 ))=?
$$\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\:\frac{\mathrm{4}{x}+\mathrm{5}}{{x}−{x}^{\mathrm{2}} }=? \\ $$
Answered by tri26112004 last updated on 24/Jul/23
We have:  •lim_(x→1^+ )  4x+5 = 4.1+5 = 9>0  • lim_(x→1^+ )  x−x^2  = 0 (∀x>1)  • g(x)=x−x^2  −> a=−1<0  ⇒ lim_(x→1^+  )  ((4x+5)/(x−x^2 ))=−∞
$${We}\:{have}: \\ $$$$\bullet\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\:\mathrm{4}{x}+\mathrm{5}\:=\:\mathrm{4}.\mathrm{1}+\mathrm{5}\:=\:\mathrm{9}>\mathrm{0} \\ $$$$\bullet\:\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\:{x}−{x}^{\mathrm{2}} \:=\:\mathrm{0}\:\left(\forall{x}>\mathrm{1}\right) \\ $$$$\bullet\:{g}\left({x}\right)={x}−{x}^{\mathrm{2}} \:−>\:{a}=−\mathrm{1}<\mathrm{0} \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\mathrm{1}^{+} \:} {\mathrm{lim}}\:\frac{\mathrm{4}{x}+\mathrm{5}}{{x}−{x}^{\mathrm{2}} }=−\infty \\ $$
Commented by mathlove last updated on 24/Jul/23
way a=−1  ass x→1^+      g(0.9)=0,9−(0.9)^2 =0.09  value is the +  way the limit symptom is  −∞
$${way}\:{a}=−\mathrm{1} \\ $$$${ass}\:{x}\rightarrow\mathrm{1}^{+} \:\:\:\:\:{g}\left(\mathrm{0}.\mathrm{9}\right)=\mathrm{0},\mathrm{9}−\left(\mathrm{0}.\mathrm{9}\right)^{\mathrm{2}} =\mathrm{0}.\mathrm{09} \\ $$$${value}\:{is}\:{the}\:+ \\ $$$${way}\:{the}\:{limit}\:{symptom}\:{is} \\ $$$$−\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *