Menu Close

a-b-c-gt-0-amp-1-a-1-b-1-c-3-prove-that-a-b-2-c-2-b-a-2-c-2-c-a-2-b-2-3-2-a-b-c-ab-bc-ac-2-




Question Number 195118 by York12 last updated on 25/Jul/23
a,b,c>0 & (1/a)+(1/b)+(1/c)=3  prove that  (a/(b^2 +c^2 ))+(b/(a^2 +c^2 ))+(c/(a^2 +b^2 ))≥(3/2)(((a+b+c)/(ab+bc+ac)))^2
$${a},{b},{c}>\mathrm{0}\:\&\:\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=\mathrm{3} \\ $$$${prove}\:{that} \\ $$$$\frac{{a}}{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }+\frac{{b}}{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} }+\frac{{c}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\geqslant\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{{a}+{b}+{c}}{{ab}+{bc}+{ac}}\right)^{\mathrm{2}} \\ $$
Commented by York12 last updated on 25/Jul/23
Witcher3  why did you delelt the solution
$${Witcher}\mathrm{3} \\ $$$${why}\:{did}\:{you}\:{delelt}\:{the}\:{solution} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *