Menu Close

Calculer-la-valeur-de-la-serie-suivante-S-3-2-5-8-7-32-9-128-




Question Number 195129 by a.lgnaoui last updated on 25/Jul/23
Calculer la valeur de la serie suivante:  S=(3/2)+(5/8)+(7/(32))+(9/(128))+.....
$$\mathrm{Calculer}\:\mathrm{la}\:\mathrm{valeur}\:\mathrm{de}\:\mathrm{la}\:\mathrm{serie}\:\mathrm{suivante}: \\ $$$$\boldsymbol{\mathrm{S}}=\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{8}}+\frac{\mathrm{7}}{\mathrm{32}}+\frac{\mathrm{9}}{\mathrm{128}}+….. \\ $$
Answered by MM42 last updated on 25/Jul/23
(1/2^2 )S=(3/2^3 )+(5/2^5 )+(7/2^7 )+...  ⇒(1−(1/4))S=(3/2)+2((1/2^3 )+(1/2^5 )+...)  =(3/2)+2(((1/8)/(1−(1/4))))=(3/2)+(1/3)=((11)/6) ✓
$$\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }{S}=\frac{\mathrm{3}}{\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{5}}{\mathrm{2}^{\mathrm{5}} }+\frac{\mathrm{7}}{\mathrm{2}^{\mathrm{7}} }+… \\ $$$$\Rightarrow\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right){S}=\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{5}} }+…\right) \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{2}\left(\frac{\frac{\mathrm{1}}{\mathrm{8}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}}\right)=\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{11}}{\mathrm{6}}\:\checkmark \\ $$
Commented by a.lgnaoui last updated on 25/Jul/23
thanks
$$\mathrm{thanks} \\ $$
Commented by a.lgnaoui last updated on 25/Jul/23
but  the answer is wrong
$$\mathrm{but}\:\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{wrong} \\ $$
Commented by MM42 last updated on 25/Jul/23
yes  (3/4)S=((11)/6)⇒S=((11)/6)×(4/3)=((22)/9)
$${yes} \\ $$$$\frac{\mathrm{3}}{\mathrm{4}}{S}=\frac{\mathrm{11}}{\mathrm{6}}\Rightarrow{S}=\frac{\mathrm{11}}{\mathrm{6}}×\frac{\mathrm{4}}{\mathrm{3}}=\frac{\mathrm{22}}{\mathrm{9}} \\ $$
Answered by BaliramKumar last updated on 25/Jul/23
S=(3/2)+(5/8)+(7/(32))+(9/(128))+.....         (i)  (S/4) = (3/8)+(5/(32))+(7/(128))+...........          (ii)  (i) − (ii)  S−(S/4) = (3/2)+((5/8)−(3/8))+((7/(32))−(5/(32)))+((9/(128))−(7/(128)))+.......  ((3S)/4) = (3/2)+((1/4))+((1/(16)))+((1/(64)))+.......  ((3S)/4) = (3/2)+  ((1/4)/(1−(1/4)))  ((3S)/4) = (3/2)+  (1/3) = ((11)/6)  S = ((11×4)/(6×3))  S =((22)/9)
$$\boldsymbol{\mathrm{S}}=\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{8}}+\frac{\mathrm{7}}{\mathrm{32}}+\frac{\mathrm{9}}{\mathrm{128}}+…..\:\:\:\:\:\:\:\:\:\left(\mathrm{i}\right) \\ $$$$\frac{\mathrm{S}}{\mathrm{4}}\:=\:\frac{\mathrm{3}}{\mathrm{8}}+\frac{\mathrm{5}}{\mathrm{32}}+\frac{\mathrm{7}}{\mathrm{128}}+………..\:\:\:\:\:\:\:\:\:\:\left(\mathrm{ii}\right) \\ $$$$\left(\mathrm{i}\right)\:−\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{S}−\frac{\mathrm{S}}{\mathrm{4}}\:=\:\frac{\mathrm{3}}{\mathrm{2}}+\left(\frac{\mathrm{5}}{\mathrm{8}}−\frac{\mathrm{3}}{\mathrm{8}}\right)+\left(\frac{\mathrm{7}}{\mathrm{32}}−\frac{\mathrm{5}}{\mathrm{32}}\right)+\left(\frac{\mathrm{9}}{\mathrm{128}}−\frac{\mathrm{7}}{\mathrm{128}}\right)+……. \\ $$$$\frac{\mathrm{3S}}{\mathrm{4}}\:=\:\frac{\mathrm{3}}{\mathrm{2}}+\left(\frac{\mathrm{1}}{\mathrm{4}}\right)+\left(\frac{\mathrm{1}}{\mathrm{16}}\right)+\left(\frac{\mathrm{1}}{\mathrm{64}}\right)+……. \\ $$$$\frac{\mathrm{3S}}{\mathrm{4}}\:=\:\frac{\mathrm{3}}{\mathrm{2}}+\:\:\frac{\frac{\mathrm{1}}{\mathrm{4}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$\frac{\mathrm{3S}}{\mathrm{4}}\:=\:\frac{\mathrm{3}}{\mathrm{2}}+\:\:\frac{\mathrm{1}}{\mathrm{3}}\:=\:\frac{\mathrm{11}}{\mathrm{6}} \\ $$$$\mathrm{S}\:=\:\frac{\mathrm{11}×\mathrm{4}}{\mathrm{6}×\mathrm{3}} \\ $$$$\mathrm{S}\:=\frac{\mathrm{22}}{\mathrm{9}} \\ $$$$ \\ $$$$ \\ $$
Commented by a.lgnaoui last updated on 25/Jul/23
Exact ,thanks
$$\mathrm{Exact}\:,\mathrm{thanks} \\ $$
Answered by a.lgnaoui last updated on 25/Jul/23
4S=6+(5/2)+(7/8)+(9/(32))+...  4S−S=6+1+(1/4)+(1/(16))+...  3S=6+(1+(1/4)+(1/4^2 )+....)     =6+(1/(1−(1/4)))=6+(4/3)=((22)/3)      ⇒          S=((22)/9)
$$\mathrm{4S}=\mathrm{6}+\frac{\mathrm{5}}{\mathrm{2}}+\frac{\mathrm{7}}{\mathrm{8}}+\frac{\mathrm{9}}{\mathrm{32}}+… \\ $$$$\mathrm{4S}−\mathrm{S}=\mathrm{6}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{16}}+… \\ $$$$\mathrm{3S}=\mathrm{6}+\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }+….\right) \\ $$$$\:\:\:=\mathrm{6}+\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}}=\mathrm{6}+\frac{\mathrm{4}}{\mathrm{3}}=\frac{\mathrm{22}}{\mathrm{3}} \\ $$$$\:\:\:\:\Rightarrow\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{S}}=\frac{\mathrm{22}}{\mathrm{9}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *