Menu Close

f-x-arctan-4sinx-3-5cosx-then-f-pi-3-




Question Number 195137 by mathlove last updated on 25/Jul/23
f(x)=arctan(((4sinx)/(3+5cosx)))   then f^′ ((π/3))=?
f(x)=arctan(4sinx3+5cosx)thenf(π3)=?
Answered by Tokugami last updated on 02/Sep/23
f′(x)=(1/(1+(((4sin x)/(3+5cos x)))^2 )) (d/dx)(((4sin x)/(3+5cos x)))  =(1/(1+((16sin^2 x)/((3+5cos x)^2 )))) (((3+5cos x)(4cos x)−(4sin x)(−5sin x))/((3+5cos x)^2 ))  =((12cos x+20cos^2 x+20sin^2 x)/((3+5cos x)^2 +16sin^2 x))  =((12cos x+20)/(9+30cos x+25cos^2 x+16sin^2 x))  =((4(3cos x+5))/(25+30cos x+9cos^2 x))=((4(3cos x+5))/((3cos x+5)^2 ))  =(4/(5+3cos x))  f′((π/3))=(4/(5+3cos((π/3))))=(4/(5+3((1/2))))=(4/(5+(3/2)))  f′((π/3))=(8/(13))
f(x)=11+(4sinx3+5cosx)2ddx(4sinx3+5cosx)=11+16sin2x(3+5cosx)2(3+5cosx)(4cosx)(4sinx)(5sinx)(3+5cosx)2=12cosx+20cos2x+20sin2x(3+5cosx)2+16sin2x=12cosx+209+30cosx+25cos2x+16sin2x=4(3cosx+5)25+30cosx+9cos2x=4(3cosx+5)(3cosx+5)2=45+3cosxf(π3)=45+3cos(π3)=45+3(12)=45+32f(π3)=813

Leave a Reply

Your email address will not be published. Required fields are marked *