Question Number 195137 by mathlove last updated on 25/Jul/23
$${f}\left({x}\right)={arctan}\left(\frac{\mathrm{4}{sinx}}{\mathrm{3}+\mathrm{5}{cosx}}\right)\:\:\:{then}\:{f}^{'} \left(\frac{\pi}{\mathrm{3}}\right)=? \\ $$
Answered by Tokugami last updated on 02/Sep/23
$${f}'\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}+\left(\frac{\mathrm{4sin}\:{x}}{\mathrm{3}+\mathrm{5cos}\:{x}}\right)^{\mathrm{2}} }\:\frac{{d}}{{dx}}\left(\frac{\mathrm{4sin}\:{x}}{\mathrm{3}+\mathrm{5cos}\:{x}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{16sin}^{\mathrm{2}} {x}}{\left(\mathrm{3}+\mathrm{5cos}\:{x}\right)^{\mathrm{2}} }}\:\frac{\left(\mathrm{3}+\mathrm{5cos}\:{x}\right)\left(\mathrm{4cos}\:{x}\right)−\left(\mathrm{4sin}\:{x}\right)\left(−\mathrm{5sin}\:{x}\right)}{\left(\mathrm{3}+\mathrm{5cos}\:{x}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{12cos}\:{x}+\mathrm{20cos}^{\mathrm{2}} {x}+\mathrm{20sin}^{\mathrm{2}} {x}}{\left(\mathrm{3}+\mathrm{5cos}\:{x}\right)^{\mathrm{2}} +\mathrm{16sin}^{\mathrm{2}} {x}} \\ $$$$=\frac{\mathrm{12cos}\:{x}+\mathrm{20}}{\mathrm{9}+\mathrm{30cos}\:{x}+\mathrm{25cos}^{\mathrm{2}} {x}+\mathrm{16sin}^{\mathrm{2}} {x}} \\ $$$$=\frac{\mathrm{4}\left(\mathrm{3cos}\:{x}+\mathrm{5}\right)}{\mathrm{25}+\mathrm{30cos}\:{x}+\mathrm{9cos}^{\mathrm{2}} {x}}=\frac{\mathrm{4}\cancel{\left(\mathrm{3cos}\:{x}+\mathrm{5}\right)}}{\left(\mathrm{3cos}\:{x}+\mathrm{5}\right)^{\cancel{\mathrm{2}}} } \\ $$$$=\frac{\mathrm{4}}{\mathrm{5}+\mathrm{3cos}\:{x}} \\ $$$${f}'\left(\frac{\pi}{\mathrm{3}}\right)=\frac{\mathrm{4}}{\mathrm{5}+\mathrm{3cos}\left(\frac{\pi}{\mathrm{3}}\right)}=\frac{\mathrm{4}}{\mathrm{5}+\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}=\frac{\mathrm{4}}{\mathrm{5}+\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$${f}'\left(\frac{\pi}{\mathrm{3}}\right)=\frac{\mathrm{8}}{\mathrm{13}} \\ $$$$ \\ $$