Menu Close

f-x-arctan-sinx-and-cosa-2-3-faind-f-a-




Question Number 195136 by mathlove last updated on 25/Jul/23
f(x)=arctan(sinx)  and  cosa=(2/3)        faind   f^′ (a)=?
$${f}\left({x}\right)={arctan}\left({sinx}\right) \\ $$$${and}\:\:{cosa}=\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:\:\:\:\:{faind}\:\:\:{f}^{'} \left({a}\right)=? \\ $$
Answered by som(math1967) last updated on 25/Jul/23
 f ′(x)=(1/(1+sin^2 x))×cosx  f ′(𝛂)=(1/(1+sin^2 𝛂))×cos𝛂   =(1/(1+(5/9)))×(2/3)  =(9/(14))×(2/3)=(3/7)
$$\:\boldsymbol{{f}}\:'\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{{sin}}^{\mathrm{2}} \boldsymbol{{x}}}×\boldsymbol{{cosx}} \\ $$$$\boldsymbol{{f}}\:'\left(\boldsymbol{\alpha}\right)=\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{{sin}}^{\mathrm{2}} \boldsymbol{\alpha}}×\boldsymbol{{cos}\alpha} \\ $$$$\:=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{5}}{\mathrm{9}}}×\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$=\frac{\mathrm{9}}{\mathrm{14}}×\frac{\mathrm{2}}{\mathrm{3}}=\frac{\mathrm{3}}{\mathrm{7}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *