Menu Close

Prove-that-x-3-2sin-2-1-2-arctan-x-y-y-3-2cos-2-1-2-arctan-y-x-x-y-x-2-y-2-




Question Number 195157 by Erico last updated on 25/Jul/23
Prove that  (x^3 /(2sin^2 ((1/2)arctan (x/y))))+(y^3 /(2cos^2 ((1/2)arctan (y/x))))=(x+y)(x^2 +y^2 )
Provethatx32sin2(12arctanxy)+y32cos2(12arctanyx)=(x+y)(x2+y2)
Answered by Frix last updated on 25/Jul/23
sin^2  tan^(−1)  α =(((√(α^2 +1))−1)/(2(√(α^2 +1))))=(((√(x^2 +y^2 ))−y)/(2(√(x^2 +y^2 ))))  cos^2  tan^(−1)  (1/α) =(((√(α^2 +1))+α)/(2(√(α^2 +1))))=(((√(x^2 +y^2 ))+x)/(2(√(x^2 +y^2 ))))  (x^3 /(2(((√(x^2 +y^2 ))−y)/(2(√(x^2 +y^2 ))))))+(y^3 /(2(((√(x^2 +y^2 ))+x)/(2(√(x^2 +y^2 ))))))=  =(√(x^2 +y^2 ))((x^3 /( (√(x^2 +y^2 ))−y))+(y^3 /( (√(x^2 +y^2 ))+x)))=  =(√(x^2 +y^2 ))(x((√(x^2 +y^2 ))+y)+y((√(x^2 +y^2 ))−x))=  =(√(x^2 +y^2 ))(x+y)(√(x^2 +y^2 ))=  =(x+y)(x^2 +y^2 )
sin2tan1α=α2+112α2+1=x2+y2y2x2+y2cos2tan11α=α2+1+α2α2+1=x2+y2+x2x2+y2x32x2+y2y2x2+y2+y32x2+y2+x2x2+y2==x2+y2(x3x2+y2y+y3x2+y2+x)==x2+y2(x(x2+y2+y)+y(x2+y2x))==x2+y2(x+y)x2+y2==(x+y)(x2+y2)

Leave a Reply

Your email address will not be published. Required fields are marked *