Menu Close

Soit-f-n-x-2-n-1-1-2-n-cotan-x-2-n-cotanx-sin-x-2-n-Calculer-lim-x-0-f-n-x-et-lim-n-f-n-x-2-2n-2-




Question Number 195126 by Erico last updated on 25/Jul/23
Soit f_n (x)=2^(n+1) [(((1/2^n )cotan((x/2^n ))−cotanx)/(sin((x/2^n ))))]  Calculer lim_(x→0) f_n (x) et lim_(n→+∞)  ((f_n (x))/2^(2n+2) )
Soitfn(x)=2n+1[12ncotan(x2n)cotanxsin(x2n)]Double subscripts: use braces to clarify
Answered by MM42 last updated on 25/Jul/23
f_n (x)=((2sinxcos((x/2^n ))−2^(n+1) sin((x/2^n ))cosx)/(sin^2 ((x/2^n ))sinx))  =((sin(x+(x/2^n ))+sin(x−(x/2^n ))−2^n sin((x/2^n )+x)−2^n sin((x/2^n )−x))/(sin^2 ((x/2^n ))sinx))  =(((1−2^n )sin(((1+2^n )/2^n ))x−(1+2^n )sin(((1−2^n )/2^n )))/(sin^2 ((x/2^n ))sinx))  =2^n ×((((1−2^n )/2^n )sin(((1+2^n )/2^n ))x−((1+2^n )/2^n )sin(((1−2^n )/2^n )))/(sin^2 ((x/2^n ))sinx))  Tip :if  x→0 ⇒ asinbx−bsinax ∼ ((ab(a−b)(a+b))/6)x^3   ⇒lim_(x→0)  f_n (x)=lim_(x→0)  2^n ×(((((1−2^n )/2^n ))(((1+2^n )/2^n ))(((1−2^n )/2^n )−((1+2^n )/2^n ))(((1−2^n )/2^n )+((1+2^n )/2^n ))(x^3 /6))/(((x/2^n ))^2 ×x))  = (((1−2^(2n) )(−2^(n+1) )×2^(3n) (2))/(2^(4n) ×6))=  =((2^(2n+1) −2)/3)  ✓    lim_(n→∞)  ((f_n (x))/2^(2n+2) ) =(1/6) ✓
fn(x)=2sinxcos(x2n)2n+1sin(x2n)cosxsin2(x2n)sinx=sin(x+x2n)+sin(xx2n)2nsin(x2n+x)2nsin(x2nx)sin2(x2n)sinx=(12n)sin(1+2n2n)x(1+2n)sin(12n2n)sin2(x2n)sinx=2n×12n2nsin(1+2n2n)x1+2n2nsin(12n2n)sin2(x2n)sinxTip:ifx0asinbxbsinaxab(ab)(a+b)6x3limx0fn(x)=limx02n×(12n2n)(1+2n2n)(12n2n1+2n2n)(12n2n+1+2n2n)x36(x2n)2×x=(122n)(2n+1)×23n(2)24n×6==22n+123limnfn(x)22n+2=16

Leave a Reply

Your email address will not be published. Required fields are marked *