Menu Close

1-f-x-sinx-pi-2-lt-x-2pi-cosx-0-x-pi-2-then-find-the-f-pi-2-2-f-x-sinx-pi-2-lt-x-2pi-cosx-0-x-pi-2-then-find




Question Number 195180 by mustafazaheen last updated on 26/Jul/23
  1.    f(x)= { ((sinx      ,    (π/2)<x≤2π)),((cosx      ,     0≤x≤(π/2))) :}  then find the f^′ ((π/2)) =?  2.     f(x)= { ((sinx      ,    (π/2)<x≤2π)),((cosx      ,     0≤x≤(π/2))) :}  then find the f′(2π) =?
$$ \\ $$$$\mathrm{1}.\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}^{'} \left(\frac{\pi}{\mathrm{2}}\right)\:=? \\ $$$$\mathrm{2}.\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}'\left(\mathrm{2}\pi\right)\:=? \\ $$$$ \\ $$
Answered by mathlove last updated on 26/Jul/23
f^′ (x)= { ((cosx)),((−sinx)) :}  f^′ ((π/2))=−sin(π/2)=−1  f^′ (2π)=cos2π=1
$${f}^{'} \left({x}\right)=\begin{cases}{{cosx}}\\{−{sinx}}\end{cases} \\ $$$${f}^{'} \left(\frac{\pi}{\mathrm{2}}\right)=−{sin}\frac{\pi}{\mathrm{2}}=−\mathrm{1} \\ $$$${f}^{'} \left(\mathrm{2}\pi\right)={cos}\mathrm{2}\pi=\mathrm{1} \\ $$
Commented by MM42 last updated on 26/Jul/23
The function is not continuouse  in  x=(π/2).therefore it is not differentiable in x=(π/2)
$${The}\:{function}\:{is}\:{not}\:{continuouse}\:\:{in} \\ $$$${x}=\frac{\pi}{\mathrm{2}}.{therefore}\:{it}\:{is}\:{not}\:{differentiable}\:{in}\:{x}=\frac{\pi}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *