Menu Close

Calculer-0-dt-e-t-e-t-2-a-2-




Question Number 195203 by Erico last updated on 27/Jul/23
Calculer ∫^( +∞) _( 0) (dt/((e^t −e^(−t) )^2 +a^2 ))
Calculer0+dt(etet)2+a2
Answered by Frix last updated on 27/Jul/23
∫_0 ^∞ (dt/((e^t −e^(−t) )^2 +a^2 )) =^([u=e^(2t) ])   =(1/2)∫_1 ^∞ (du/(u^2 +(a^2 −2)u+1))=  =(1/(2a(√(a^2 −4))))[ln ∣((2u+a^2 −2+a(√(a^2 −4)))/(2u+a^2 −2−a(√(a^2 −4))))∣]_1 ^∞ =  =(1/(2a(√(a^2 −4))))ln ∣((a−(√(a^2 −4)))/(a+(√(a^2 −4))))∣
0dt(etet)2+a2=[u=e2t]=121duu2+(a22)u+1==12aa24[ln2u+a22+aa242u+a22aa24]1==12aa24lnaa24a+a24

Leave a Reply

Your email address will not be published. Required fields are marked *