Menu Close

In-1-e-lnx-n-x-2-dx-using-an-enclosing-lnx-on-interval-1-e-show-that-n-N-0-In-1-




Question Number 195223 by Rodier97 last updated on 27/Jul/23
              In=∫_1 ^e (((lnx)^n )/x^2 ) dx       using an enclosing lnx on interval [1;e] show that ∀n ∈ N^∗ , 0 ≤In≤ 1
In=1e(lnx)nx2dxusinganenclosinglnxoninterval[1;e]showthatnN,0In1

Leave a Reply

Your email address will not be published. Required fields are marked *