Menu Close

If-10sin-4-x-15cos-4-x-6-find-the-value-of-27cosec-6-x-8sec-6-x-




Question Number 195253 by Spillover last updated on 28/Jul/23
If 10sin^4 x+15cos^4 x=6.  find the value of  27cosec^6 x+8sec^6 x
If10sin4x+15cos4x=6.findthevalueof27cosec6x+8sec6x
Commented by Frix last updated on 28/Jul/23
250
250
Answered by BaliramKumar last updated on 28/Jul/23
10sin^4 x + 15cos^4 x = 6  ((10)/6)sin^4 x + ((15)/6)cos^4 x = 1  (5/3)sin^4 x + (5/2)cos^4 x = 1  ((5/3)sin^2 x)∙sin^2 x + ((5/2)cos^2 x)∙cos^2 x = 1  ((5/3)sin^2 x) = 1   &  ((5/2)cos^2 x) = 1  ((5/3)) = (1/(sin^2 x))   &  ((5/2)) = (1/(cos^2 x))  ((5/3)) = cosec^2 x   &  ((5/2)) = sec^2 x    27cosec^6 x + 8sec^6 x  27((5/3))^3  + 8((5/2))^3  = 27(((125)/(27))) + 8(((125)/8))  125 + 125 = 250
10sin4x+15cos4x=6106sin4x+156cos4x=153sin4x+52cos4x=1(53sin2x)sin2x+(52cos2x)cos2x=1(53sin2x)=1&(52cos2x)=1(53)=1sin2x&(52)=1cos2x(53)=cosec2x&(52)=sec2x27cosec6x+8sec6x27(53)3+8(52)3=27(12527)+8(1258)125+125=250
Commented by Spillover last updated on 03/Aug/23
thank you
thankyou
Answered by Spillover last updated on 02/Aug/23
10sin^4 x+15cos^4 x=6  divide by cos^4 x both sides  10tan^4 x+15=6sec^4 x  10tan ^4 x+15=6(1+tan^2 x)^2   4tan^4 x−12tan^2 x+9=0  (2tan^2 x−3)^2 =0  tan^2 x=(3/2)                  cot^2 x=(2/3)  27cosec^6 x+8sec^6 x  27(1+cot^2 x)^3 +8(1+tan^2 x)^3   but  tan^2 x=(3/2)                  cot^2 x=(2/3)  27(1+(2/3))^3 +8(1+(3/2))^3   27((5/3))^3 +8((5/2))^3   250
10sin4x+15cos4x=6dividebycos4xbothsides10tan4x+15=6sec4x10tan4x+15=6(1+tan2x)24tan4x12tan2x+9=0(2tan2x3)2=0tan2x=32cot2x=2327cosec6x+8sec6x27(1+cot2x)3+8(1+tan2x)3buttan2x=32cot2x=2327(1+23)3+8(1+32)327(53)3+8(52)3250

Leave a Reply

Your email address will not be published. Required fields are marked *