Menu Close

spillover-dx-e-5x-e-2x-e-2x-3-




Question Number 195252 by Spillover last updated on 28/Jul/23
∫_(spillover)       (dx/( (√e^(5x) ) (√((e^(2x) +e^(−2x) )^3 ))))
$$\int_{\boldsymbol{{spillover}}} \:\:\:\:\:\:\frac{{dx}}{\:\sqrt{{e}^{\mathrm{5}{x}} }\:\sqrt{\left({e}^{\mathrm{2}{x}} +{e}^{−\mathrm{2}{x}} \right)^{\mathrm{3}} }} \\ $$
Answered by Frix last updated on 28/Jul/23
=∫(e^(x/2) /( (e^(4x) +1)^(3/2) ))dx=  =(e^(x/2) /(2(e^(4x) +1)^(1/2) ))+(3/4)∫(e^(x/2) /((e^(4x) +1)^(1/2) ))dx=  =(e^(x/2) /(2(e^(4x) +1)^(1/2) ))+((3e^(x/2) )/2) _2 F_1  ((1/8), (1/2); (9/8); −e^(4x) ) =  =(e^(x/2) /2)((e^(4x) +1)^(−(1/2)) +3 _2 F_1  ((1/8), (1/2); (9/8); −e^(4x) ))+C
$$=\int\frac{\mathrm{e}^{\frac{{x}}{\mathrm{2}}} }{\:\left(\mathrm{e}^{\mathrm{4}{x}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx}= \\ $$$$=\frac{\mathrm{e}^{\frac{{x}}{\mathrm{2}}} }{\mathrm{2}\left(\mathrm{e}^{\mathrm{4}{x}} +\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }+\frac{\mathrm{3}}{\mathrm{4}}\int\frac{\mathrm{e}^{\frac{{x}}{\mathrm{2}}} }{\left(\mathrm{e}^{\mathrm{4}{x}} +\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{dx}= \\ $$$$=\frac{\mathrm{e}^{\frac{{x}}{\mathrm{2}}} }{\mathrm{2}\left(\mathrm{e}^{\mathrm{4}{x}} +\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }+\frac{\mathrm{3e}^{\frac{{x}}{\mathrm{2}}} }{\mathrm{2}}\:_{\mathrm{2}} \mathrm{F}_{\mathrm{1}} \:\left(\frac{\mathrm{1}}{\mathrm{8}},\:\frac{\mathrm{1}}{\mathrm{2}};\:\frac{\mathrm{9}}{\mathrm{8}};\:−\mathrm{e}^{\mathrm{4}{x}} \right)\:= \\ $$$$=\frac{\mathrm{e}^{\frac{{x}}{\mathrm{2}}} }{\mathrm{2}}\left(\left(\mathrm{e}^{\mathrm{4}{x}} +\mathrm{1}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{3}\:_{\mathrm{2}} \mathrm{F}_{\mathrm{1}} \:\left(\frac{\mathrm{1}}{\mathrm{8}},\:\frac{\mathrm{1}}{\mathrm{2}};\:\frac{\mathrm{9}}{\mathrm{8}};\:−\mathrm{e}^{\mathrm{4}{x}} \right)\right)+{C} \\ $$
Commented by Spillover last updated on 03/Aug/23
very nice
$${very}\:{nice} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *