Menu Close

it-is-given-a-b-c-N-and-ab-lt-c-Prove-that-a-b-c-




Question Number 195291 by Matica last updated on 29/Jul/23
  it is given a,b,c ∈ N^∗   and  ab<c . Prove that a+b≤c.
$$\:\:{it}\:{is}\:{given}\:{a},{b},{c}\:\in\:\mathbb{N}^{\ast} \:\:{and}\:\:{ab}<{c}\:.\:{Prove}\:{that}\:{a}+{b}\leqslant{c}. \\ $$
Answered by Frix last updated on 29/Jul/23
c=ab+1  a+b≤ab+1  Let a<b  b−ab≤1−a  b(1−a)≤1−a  This is always true for a=1∧b∈N^∗   For a>1:  1−a<0 ⇒ b(1−a)≤1−a ⇔ b≥1 which is  true because b∈N^∗
$${c}={ab}+\mathrm{1} \\ $$$${a}+{b}\leqslant{ab}+\mathrm{1} \\ $$$$\mathrm{Let}\:{a}<{b} \\ $$$${b}−{ab}\leqslant\mathrm{1}−{a} \\ $$$${b}\left(\mathrm{1}−{a}\right)\leqslant\mathrm{1}−{a} \\ $$$$\mathrm{This}\:\mathrm{is}\:\mathrm{always}\:\mathrm{true}\:\mathrm{for}\:{a}=\mathrm{1}\wedge{b}\in\mathbb{N}^{\ast} \\ $$$$\mathrm{For}\:{a}>\mathrm{1}: \\ $$$$\mathrm{1}−{a}<\mathrm{0}\:\Rightarrow\:{b}\left(\mathrm{1}−{a}\right)\leqslant\mathrm{1}−{a}\:\Leftrightarrow\:{b}\geqslant\mathrm{1}\:\mathrm{which}\:\mathrm{is} \\ $$$$\mathrm{true}\:\mathrm{because}\:{b}\in\mathbb{N}^{\ast} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *